NEET NEET SOLVED PAPER 2018

  • question_answer
    An electron of mass m with an initial velocity\[\overrightarrow{v}={{v}_{0}}\widehat{i}({{v}_{0}}>0)\] enters an electric field\[\overrightarrow{\text{E}}\text{=-}{{\text{E}}_{\text{0}}}\widehat{\text{i}}\text{(}{{\text{E}}_{\text{0}}}\text{=}\]constant > 0) at t = 0. If \[{{\lambda }_{0}}\] is its de-Broglie wavelength initially, then its de-Broglie wavelength at time t is            [NEET - 2018]

    A)  \[{{\lambda }_{\text{0}}}\text{t}\]                          

    B)  \[{{\lambda }_{0}}\left( 1+\frac{e{{E}_{0}}}{m{{V}_{0}}}t \right)\]

    C)  \[\frac{{{\lambda }_{0}}}{\left( 1+\frac{e{{E}_{0}}}{m{{V}_{0}}}t \right)}\]

    D)  \[{{\lambda }_{0}}\]

    Correct Answer: C

    Solution :

    Initial de-Broglie wavelength \[{{\lambda }_{0}}\text{=}\frac{\text{h}}{\text{m}{{\text{V}}_{\text{0}}}}\]                                       ?(i) Acceleration of electron \[a=\frac{e{{E}_{0}}}{m}\] Velocity after time ?t? \[\text{V=}\left( {{\text{V}}_{\text{0}}}\text{+}\frac{\text{e}{{\text{E}}_{\text{0}}}}{\text{m}}\text{t} \right)\] So, \[\lambda \text{=}\frac{\text{h}}{\text{mV}}\text{=}\frac{\text{h}}{\text{m}\left( {{\text{V}}_{\text{0}}}\text{+}\frac{\text{e}{{\text{E}}_{\text{0}}}}{\text{m}}\text{t} \right)}\] \[=\frac{h}{m{{V}_{0}}\left[ 1+\frac{e{{E}_{0}}}{m{{V}_{0}}}t \right]}=\frac{{{\lambda }_{0}}}{\left[ 1+\frac{e{{E}_{0}}}{m{{V}_{0}}}t \right]}\]            ?(ii) Divide (ii) by (i), \[\lambda =\frac{{{\lambda }_{0}}}{\left[ 1+\frac{e{{E}_{0}}}{m{{V}_{0}}}t \right]}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner