Solved papers for NEET Chemistry NEET PYQ-Chemical Kinetics

done NEET PYQ-Chemical Kinetics Total Questions - 49

  • question_answer1) Activation energy of a chemical reaction can be determined by:                               [AIPMT 1998]

    A)
    evaluating rate constant at standard temperature

    B)
    evaluating velocities of reaction at two different temperatures

    C)
    evaluating rate constants at two different temperatures

    D)
    changing concentration of reactants

    View Answer play_arrow
  • question_answer2) For a first-order reaction, the half-life period is independent of:                                 [AIPMT 1999]

    A)
    initial concentration                    

    B)
    cube root of initial concentration

    C)
    first power of final concentration  

    D)
    square root of final concentration

    View Answer play_arrow
  • question_answer3) 
    In the following reaction, how is the rate of appearance of the underlined product related to the rate of disappearance of the underlined reactant?                               [AIPMT 2000]
    \[BrO_{3}^{-}(aq)+\underline{5B{{r}^{-}}(aq)}+6{{H}^{+}}(aq)\xrightarrow{{}}\]\[\underline{3B{{r}_{2}}(l)}+3{{H}_{2}}O(l)\]

    A)
          \[\frac{d[B{{r}_{2}}]}{dt}=-\frac{5}{3}\frac{d[B{{r}^{-}}]}{dt}\]

    B)
    \[\frac{d[B{{r}_{2}}]}{dt}=-\frac{d[B{{r}^{-}}]}{dt}\]

    C)
    \[\frac{d[B{{r}_{2}}]}{dt}=\frac{3}{5}\frac{d[B{{r}^{-}}]}{dt}\]         

    D)
    \[\frac{d[B{{r}_{2}}]}{dt}=-\frac{3}{5}\frac{d[B{{r}^{-}}]}{dt}\]

    View Answer play_arrow
  • question_answer4) For the reactions \[2{{N}_{2}}{{O}_{5}}\to 4N{{O}_{2}}+{{O}_{2}}\] rate and rate constant are \[1.02\times {{10}^{-4}}\] and \[3.4\times {{10}^{-5}}\,{{s}^{-1}}\] respectively, then cone, of \[{{N}_{2}}{{O}_{5}}\] at that time will be:                                               [AIPMT 2001]

    A)
    1.732

    B)
    3

    C)
    \[1.02\times {{10}^{-4}}\]

    D)
    \[3.4\times {{10}^{5}}\]

    View Answer play_arrow
  • question_answer5) When a biochemical reaction is carried out in laboratory from out-side of human body in the absence of enzyme then of reaction Obtained is \[{{10}^{-6}}\] times, then activation energy of reaction in the presence of enzyme is:         [AIPMT 2001]

    A)
    \[\frac{6}{RT}\]            

    B)
                     P it required                  

    C)
    Different from \[{{E}_{a}}\] obtained in laboratory

    D)
    Cannot say any things

    View Answer play_arrow
  • question_answer6) \[3A\xrightarrow{{}}2B,\] rate of reaction \[+\frac{d[B]}{dt}\] is equal to: [AIPMT 2002]

    A)
    \[-\frac{3}{2}\frac{d[A]}{dt}\]

    B)
    \[-\frac{2}{3}\frac{d[A]}{dt}\]

    C)
    \[-\frac{1}{3}\frac{d[A]}{dt}\]

    D)
    \[+2\frac{d\,[A]}{dt}\]

    View Answer play_arrow
  • question_answer7) \[3A\xrightarrow[{}]{{}}B+C\] It would be a zero order reaction when:                                            [AIPMT 2002]

    A)
    the rate of reaction is proportional to square of concentration of A

    B)
    the rate of reaction remains same at any concentration of A

    C)
    the rate remains unchanged at any concentration of B and C

    D)
    the rate of reaction doubles if concentration of B is increased to double

    View Answer play_arrow
  • question_answer8) 
    The reaction \[A\to B\] follows first order kinetics. The time taken for 0.8 mole of A to produce 0.6 mole of B is 1 hour.
    What is the time taken for conversion of 0.9 mole of A to produce 0.675 mole of B?   [AIPMT 2003]

    A)
    0.25 h

    B)
    2 h

    C)
    1 h

    D)
    0.5 h

    View Answer play_arrow
  • question_answer9) 
    The emf of a Daniell cell at 298 K is\[{{E}_{1}}\] [AIPMT 2003]
                            \[ZN\,\left| \begin{align}   & ZnS{{O}_{4}} \\  & (0.01\,M) \\ \end{align} \right|\,\left| \begin{align}   & CuS{{O}_{4}} \\  & (1.0\,M) \\ \end{align} \right|Cu\]
                When the concentration of \[ZnS{{O}_{4}}\] is 1.0 M and that of \[CuS{{O}_{4}}\] is 0.01 M, the emf changed to \[{{E}_{2}}.\]What is the relationship between \[{{E}_{1}}\] and \[{{E}_{2}}\]?

    A)
    \[{{E}_{1}}={{E}_{2}}\]

    B)
    \[{{E}_{2}}=0\,\ne {{E}_{1}}\]

    C)
    \[{{E}_{1}}>E{{ & }_{2}}\]

    D)
    \[{{E}_{1}}<{{E}_{2}}\]

    View Answer play_arrow
  • question_answer10) The temperature dependence of rate constant (k) of a chemical reaction is written in terms of Arrhenius equation, \[k=A{{e}^{-E*/RT}}\]. Activation energy \[(E*)\] of the reaction can be calculated by ploting: [AIPMT 2003]

    A)
    \[\log \,k\,vs\frac{1}{T}\]

    B)
    \[\log \,k\,vs\,\frac{1}{\log \,T}\]

    C)
    \[k\,vs\,T\]

    D)
    \[k\,vs\frac{1}{\log \,T}\]

    View Answer play_arrow
  • question_answer11) If the rate of the reaction is equal to the rate constant, the order of the reaction is:       [AIPMT 2003]

    A)
    2

    B)
    3

    C)
    0

    D)
    1

    View Answer play_arrow
  • question_answer12) The activation energy for a simple chemical reaction \[A\to B\] is \[{{E}_{a}}\] in forward direction. The activation energy for reverse reaction:                                                 [AIPMT 2003]

    A)
    can be less than or more than \[{{E}_{a}}\]                   

    B)
    is always double of \[{{E}_{a}}\]

    C)
    is negative of \[{{E}_{a}}\]                 

    D)
    is always less than \[{{E}_{a}}\]

    View Answer play_arrow
  • question_answer13) The rate of first order reaction is \[1.5\times {{10}^{-2}}\,mo{{l}^{-1}}\,{{\min }^{-1}}\] at 0.5 M concentration of the reactant. The half-life of the reaction is: [AIPMT (S) 2004]

    A)
    0.383 mm

    B)
    23.1 mm

    C)
    8.73 mm

    D)
    7.53 mm

    View Answer play_arrow
  • question_answer14) For a first order reaction \[A\xrightarrow[{}]{{}}B\,,\] the reaction rate at reactant concentration of 0.01 M is found to be \[2.0\times {{10}^{-5}}\,mol\,{{L}^{-1}}\,{{s}^{-1}}\]. The half-life period of the reaction is:                       [AIPMT (S) 2005]

    A)
    220 s

    B)
    30 s 

    C)
    300 s

    D)
    347 s

    View Answer play_arrow
  • question_answer15) The rate of reaction between two reactants A and B decreases by a factor of 4, if die concentration of reactant B is doubled. The order of this reaction with respect to reactant B is: [AIPMT (S) 2005]

    A)
    - 1

    B)
    - 2

    C)
    1

    D)
    2

    View Answer play_arrow
  • question_answer16) For the reaction \[2A+B~\to 3C+D\]which of the following does not express the reaction rate?  [AIPMT (S) 2006]

    A)
    \[-\frac{d\,[C]}{3\,dt}\]

    B)
    \[-\frac{d\,[B]}{dt}\]      

    C)
    \[\frac{d\,[D]}{dt}\]

    D)
     \[-\frac{d\,[A]}{2\,dt}\]

    View Answer play_arrow
  • question_answer17) 
    Consider the reaction \[{{N}_{2}}(g)+3{{H}_{2}}(g)\xrightarrow{{}}2N{{H}_{3}}(g)\]
                The equality relationship between \[\frac{d[N{{H}_{3}}]}{dt}\] and \[-\frac{d[{{H}_{2}}]}{dt}\] is:                  [AIPMT (S) 2006]

    A)
    \[\frac{d\,[N{{H}_{3}}]}{dt}=-\frac{1}{3}\,\frac{d\,[{{H}_{2}}]}{dt}\]

    B)
    \[+\frac{d\,[N{{H}_{3}}]}{dt}=-\frac{2}{3}\,\frac{d\,[{{H}_{2}}]}{dt}\]           

    C)
    \[+\frac{d\,[N{{H}_{3}}]}{dt}=-\frac{3}{2}\,\frac{d\,[{{H}_{2}}]}{dt}\]

    D)
    \[\frac{d\,[N{{H}_{3}}]}{dt}=-\,\frac{d\,[{{H}_{2}}]}{dt}\]

    View Answer play_arrow
  • question_answer18) 
    The reaction of hydrogen and iodine monochloride is given as:      [AIPMT (S) 2007]
             \[{{H}_{2}}(g)+2ICl(g)\xrightarrow{{}}2HCl(g)+{{I}_{2}}(g)\]
                This reaction is of first order with respect to \[{{H}_{2}}(g)\] and \[ICl(g),\] following mechanisms were proposed:
                Mechanism A:    \[{{H}_{2}}(g)+2ICl(g)\xrightarrow{{}}2HCl(g)+{{I}_{2}}(g)\]
                Mechanism B: \[{{H}_{2}}(g)+ICl(g)\xrightarrow{{}}HCl(g)+HI(g)\]; show
                \[HI(g)+ICl(g)\xrightarrow{{}}HCl(g)+{{I}_{2}}(g)\]; fast
                Which of the above mechanism (s) can be consistent with the given information about the reaction?

    A)
    B only

    B)
    A and B both

    C)
    Neither A nor B

    D)
    A only

    View Answer play_arrow
  • question_answer19) In a first order reaction \[A\xrightarrow[{}]{{}}B,\] if k is rate constant and  initial  concentration  of the reactant A is 0.5 M then the half-life is :                                                               [AIPMT (S) 2007]

    A)
                                \[\frac{0.693}{0.5\,k}\]

    B)
    \[\frac{\log \,2}{k}\]

    C)
          \[\frac{\log \,2}{k\sqrt{0.5}}\]

    D)
          \[\frac{\ln \,2}{k}\]

    View Answer play_arrow
  • question_answer20) 
    If 60% of a first order reaction was completed in 60 min 50% of the same reaction would be completed in approximately: [AIPMT (S) 2007]
                (log 4 = 0.60 log 5 = 0.69)

    A)
    50 min

    B)
    45 min

    C)
    60 min

    D)
    40 min

    View Answer play_arrow
  • question_answer21) The rate constants \[{{k}_{1}}\] and \[{{k}_{2}}\] for two different reactions are \[{{10}^{16}}.{{e}^{-2000/T}}\] and \[{{10}^{15}}.{{e}^{-1000/T}},\] respectively. The temperature at which \[{{k}_{1}}={{k}_{2}}\] is [AIPMT (S) 2008]

    A)
    1000 K

    B)
    \[\frac{2000}{2.303}K\]

    C)
    2000K

    D)
    \[\frac{1000}{2.303}K\]

    View Answer play_arrow
  • question_answer22) 
    The bromination of acetone that occurs in acid solution is represented by this equation. [AIPMT (S) 2008]
    \[C{{H}_{3}}COC{{H}_{3}}(aq)+B{{r}_{2}}(aq)\xrightarrow[{}]{{}}\]\[C{{H}_{3}}COC{{H}_{2}}Br(aq)+{{H}^{+}}(aq)+B{{r}^{-}}(aq)\]
    These kinetic data were obtained for given reaction concentrations.
    Initial concentrations, M
    \[[C{{H}_{3}}COC{{H}_{3}}]\]            \[[B{{r}_{2}}]\]             \[[{{H}^{+}}]\]
    0.30                  0.05                  0.05
    0.30                  0.10                  0.05
    0.30                  0.10                  0.10
    0.40                  0.05                  0.20
    Initial rate, disappearance of \[B{{r}_{2}},M{{s}^{-1}}\]
    \[5.7\times {{10}^{-5}}\]
    \[5.7\times {{10}^{-5}}\]
    \[1.2\times {{10}^{-4}}\]
    \[3.1\times {{10}^{-4}}\]
    Based on these data, the rate equation is

    A)
    Rate \[=k[C{{H}_{3}}COC{{H}_{3}}][{{H}^{+}}]\]

    B)
    Rate \[=k[CH=COC{{H}_{3}}][B{{r}_{2}}]\]

    C)
    Rate \[=k[C{{H}_{3}}COC{{H}_{3}}][B{{r}_{2}}]{{[{{H}^{+}}]}^{2}}\]

    D)
    Rate \[=k[C{{H}_{3}}COC{{H}_{3}}][B{{r}_{2}}]{{[{{H}^{+}}]}^{2}}\]

    View Answer play_arrow
  • question_answer23) Half-life period of a first order reaction is 1386s. The specific rate constant of the reaction is [AIPMT (S) 2009]

    A)
    \[{{(C{{H}_{3}})}_{2}}P\]

    B)
    \[{{(C{{H}_{3}})}_{3}}N\]

    C)
    \[0.5\times {{10}^{-3}}\,{{s}^{-1}}\]

    D)
    \[0.0\times {{10}^{-2}}\,{{s}^{-1}}\]

    View Answer play_arrow
  • question_answer24) For the reaction, \[(At.no.Zn=30,Sc=21,Ti=22,Cr=24)\]if \[{{[Sc{{({{H}_{2}}O)}_{3}}{{(N{{H}_{3}})}_{3}}]}^{3+}}\] mol \[{{[Ti{{(en)}_{2}}{{(N{{H}_{3}})}_{2}}]}^{4+}}\]the value of \[{{[Cr{{(N{{H}_{3}})}_{6}}]}^{2+}}\]would be                [AIPMT (S) 2009]

    A)
    \[{{[Zn{{(N{{H}_{3}})}_{6}}]}^{2+}}\]

    B)
    \[5.0\times {{10}^{-3}}{{s}^{-1}}\]

    C)
    \[0.5\times {{10}^{-2}}{{s}^{-1}}\]

    D)
    \[0.5\times {{10}^{-3}}{{s}^{-1}}\]

    View Answer play_arrow
  • question_answer25) 
    In the reaction,                  [AIPMT (S) 2009]
    \[\frac{-d[{{H}_{2}}]}{dt}\]
    \[3\times {{10}^{4}}\,mol\,{{L}^{-1}}\,{{s}^{-1}}\]
    The rate of appearance of bromine \[4\times {{10}^{4}}\,mol\,{{L}^{-1}}\,{{s}^{-1}}\]) is related to rate of disappearance of bromide ions as following

    A)
    \[6\times {{10}^{4}}\,mol\,{{L}^{-1}}\,{{s}^{-1}}\]

    B)
    \[1\times {{10}^{4}}\,mol\,{{L}^{-1}}\,{{s}^{-1}}\]

    C)
    \[[O{{H}^{-}}]\]

    D)
    \[\text{Ba(OH}{{\text{)}}_{\text{2}}}\]

    View Answer play_arrow
  • question_answer26) For the reaction, \[{{N}_{2}}{{O}_{5}}(g)\xrightarrow[{}]{{}}2N{{O}_{2}}(g)+\frac{1}{2}{{O}_{2}}(g)\]the value of rate of disappearance of \[{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}\] is given as \[6.25\times {{10}^{-3}}\]\[\text{mol}\,{{\text{L}}^{\text{-1}}}{{\text{s}}^{\text{-1}}}\]. The rate of formation of \[N{{O}_{2}}\] and \[{{O}_{2}}\] is given respectively as            [AIPMT (S) 2010]

    A)
    \[6.25\times {{10}^{-3}}mol\,{{L}^{-1}}{{s}^{-1}}\]and \[6.25\times {{10}^{-3}}mol\,{{L}^{-1}}{{s}^{-1}}\]

    B)
    \[1.25\times {{10}^{-2}}mol\,{{L}^{-1}}{{s}^{-1}}\]and\[3.125\times {{10}^{-3}}mol\,{{L}^{-1}}{{s}^{-1}}\]

    C)
    \[6.25\times {{10}^{-3}}mol\,{{L}^{-1}}{{s}^{-1}}\]and \[3.125\times {{10}^{-3}}mol\,{{L}^{-1}}{{s}^{-1}}\]

    D)
    \[1.25\times {{10}^{-3}}mol\,{{L}^{-1}}{{s}^{-1}}\]and \[6.25\times {{10}^{-3}}mol\,{{L}^{-1}}{{s}^{-1}}\]

    View Answer play_arrow
  • question_answer27) 
    During the kinetic study of the reaction, \[2A+B\to C+D,\] following results were obtained        [AIPMT (S) 2010]
    \[Ru\,[A]/mol\,{{L}^{-1}}[B]/mol\,{{L}^{-1}}\]Initial rate of formation of \[D/mol\,{{L}^{-1}}{{\min }^{-1}}\]
    I           0.1        0.1        \[6.0\times {{10}^{-3}}\]
    II          0.3        0.2        \[7.2\times {{10}^{-2}}\]
    III         0.3        0.4        \[2.88\times {{10}^{-1}}\]
    IV         0.4        0.1        \[2.40\times {{10}^{-2}}\]
    Based on the above data which one of the following is correct ?

    A)
    \[rate=k{{[A]}^{2}}[B]\]

    B)
    \[rate=k[A][B]\]

    C)
    \[rate=k{{[A]}^{2}}{{[B]}^{2}}\]

    D)
    \[rate=k[A]{{[B]}^{2}}\]

    View Answer play_arrow
  • question_answer28) The rate of the reaction,\[2NO+C{{l}_{2}}\xrightarrow[{}]{{}}2NOCl\]is given by the rate equation, rate\[=k{{[NO]}^{2}}[C{{l}_{2}}]\]The value of the rate constant can be increased by [AIPMT (M) 2010]

    A)
    increasing the temperature

    B)
    increasing the concentration of NO

    C)
    increasing the concentration of the Cl2 doing

    D)
    all of the above

    View Answer play_arrow
  • question_answer29) Which one of the following statements for the order of a reaction is incorrect? [AIPMT (S) 2011]

    A)
    Order is not influenced by stoichiometric coefficient of the reactants

    B)
    Order of reaction is sum of power to the concentration terms of reactants to express the rate of reaction

    C)
    Order of reaction is always whole number

    D)
    Order   can   be   determined   only experimentally

    View Answer play_arrow
  • question_answer30) The half-life of a substance in a certain enzyme-catalyses reaction is 138 s. The time required for the concentration of the substance to fall from 1.28 mg \[{{\text{L}}^{\text{-1}}}\] to 0.04 mg \[{{\text{L}}^{\text{-1}}}\] is [AIPMT (M) 2011]

    A)
    414 s

    B)
    552 s

    C)
    690 s

    D)
    276 s

    View Answer play_arrow
  • question_answer31) 
    The rate of reaction \[2{{N}_{2}}{{O}_{5}}\xrightarrow[{}]{{}}4N{{O}_{2}}+{{O}_{2}}\]can be written in three ways
    \[\frac{-d[{{N}_{2}}{{O}_{5}}]}{dt}=k[{{N}_{2}}{{O}_{5}}]\]            \[\frac{d[NO_{7}^{2}]}{dt}=k'[{{N}_{2}}{{O}_{5}}]\]
    \[\frac{d[O_{2}^{{}}]}{dt}=k''[{{N}_{2}}{{O}_{5}}]\]    [AIPMT (M) 2011]
    The relationship between k and k' and between k’’ and k'' are

    A)
    k’ = 2 k; k’ = k

    B)
    k’ = 2k; k’’=k/2

    C)
    k’ = 2k; k’’ = 2k

    D)
    k’ = k; k’’ = k

    View Answer play_arrow
  • question_answer32) The unit of rate constant for- a zero order reaction is                                        [AIPMT (M) 2011]

    A)
    \[\text{mol}\,{{\text{L}}^{\text{-1}}}\,{{\text{s}}^{\text{-1}}}\]

    B)
    \[\text{L}\,\text{mo}{{\text{l}}^{\text{-1}}}\,{{\text{s}}^{\text{-1}}}\]

    C)
    \[{{\text{L}}^{\text{2}}}\,\text{mo}{{\text{l}}^{\text{-2}}}\,{{\text{s}}^{\text{-1}}}\]

    D)
    \[\,{{\text{s}}^{\text{-1}}}\]

    View Answer play_arrow
  • question_answer33) In a reaction, \[\text{A}\,\text{+}\,\text{B}\to \] Product, rate is doubled when the concentration of B is doubled, and rate increases by a factor of 8 when the concentrations of both the reactants (A and B) are doubled. Rate law for the reaction can be written a [AIPMT (S) 2012]

    A)
    \[\text{Rate}\,\text{=}\,\text{k}\,\text{ }\!\![\!\!\text{ A }\!\!]\!\!\text{ }\,{{\text{ }\!\![\!\!\text{ B }\!\!]\!\!\text{ }}^{\text{2}}}\]

    B)
    \[\text{Rate}\,\text{=}\,\text{k}\,{{\text{ }\!\![\!\!\text{ A }\!\!]\!\!\text{ }}^{\text{2}}}\,{{\text{ }\!\![\!\!\text{ B }\!\!]\!\!\text{ }}^{\text{2}}}\]

    C)
    \[\text{Rate}\,\text{=}\,\text{k}\,\text{ }\!\![\!\!\text{ A }\!\!]\!\!\text{ }\,\text{ }\!\![\!\!\text{ B }\!\!]\!\!\text{ }\]

    D)
    \[\text{Rate}\,\text{=}\,\text{k }\!\![\!\!\text{ A}{{\text{ }\!\!]\!\!\text{ }}^{\text{2}}}\text{ }\!\![\!\!\text{ B }\!\!]\!\!\text{ }\]

    View Answer play_arrow
  • question_answer34) In a zero order reaction for every 10° rise of temperature, the rate is doubled. If the temperature is increased from 10°C to 100°C, the rate of the reaction will become [AIPMT (S) 2012]

    A)
    256 times

    B)
    512 times

    C)
    64 times

    D)
    128 times

    View Answer play_arrow
  • question_answer35) Activation energy (Ea) and rate constants (k1 and k2) of a chemical reaction at two different temperatures T1 and T2) are related by  [AIPMT (M) 2012]

    A)
    \[\ln \frac{{{k}_{2}}}{{{k}_{1}}}=-\frac{{{E}_{a}}}{R}\left( \frac{1}{{{T}_{1}}}-\frac{1}{{{T}_{2}}} \right)\]

    B)
    \[\ln \frac{{{k}_{2}}}{{{k}_{1}}}=-\frac{{{E}_{a}}}{R}\left( \frac{1}{{{T}_{2}}}-\frac{1}{{{T}_{1}}} \right)\]

    C)
    \[\ln \frac{{{k}_{2}}}{{{k}_{1}}}=-\frac{{{E}_{a}}}{R}\left( \frac{1}{{{T}_{2}}}+\frac{1}{{{T}_{1}}} \right)\]

    D)
    \[\ln \frac{{{k}_{2}}}{{{k}_{1}}}=\frac{{{E}_{a}}}{R}\left( \frac{1}{{{T}_{1}}}-\frac{1}{{{T}_{2}}} \right)\]

    View Answer play_arrow
  • question_answer36) 
    What is the activation energy for a reaction if its rate doubles when the temperature is raised from 20°C to 35°C?
    (\[\text{R=}\,\text{8}\text{.314}\,\text{J}\,\text{mo}{{\text{l}}^{\text{-1}}}\,{{\text{K}}^{\text{-1}}}\])[NEET 2013]

    A)
    \[\text{342}\,\text{kJ}\,\text{mo}{{\text{l}}^{\text{-1}}}\]

    B)
    \[269\,\text{kJ}\,\text{mo}{{\text{l}}^{\text{-1}}}\]

    C)
    \[34.7\,\text{kJ}\,\text{mo}{{\text{l}}^{\text{-1}}}\]

    D)
    \[15.1\,\text{kJ}\,\text{mo}{{\text{l}}^{\text{-1}}}\]

    View Answer play_arrow
  • question_answer37) A reaction having equal energies of activation for forward and reverse reactions has [NEET 2013]

    A)
    \[\Delta S=0\]

    B)
    \[\Delta G=0\]

    C)
    \[\Delta H=0\]

    D)
    \[\Delta H=\Delta G=\Delta S=0\]

    View Answer play_arrow
  • question_answer38) The activation energy of a reaction can be determined from the slope of which of the following graphs?         [NEET 2015 ]

    A)
    In \[K\,vsT\]

    B)
    \[\frac{\text{ln}K}{T}vsT\]

    C)
    In \[Kvs\frac{l}{T}\]

    D)
    \[\frac{T}{\ln \,k}vs\frac{l}{T}\]

    View Answer play_arrow
  • question_answer39) When initial concentration of a reactant is doubled in a reaction, its half-life period is not affected. The order of the reaction is [NEET 2015 ]

    A)
    zero

    B)
    first

    C)
    second

    D)
    more than zero but less than first

    View Answer play_arrow
  • question_answer40) The rate constant of the reaction A ® B is \[0.6\times {{10}^{-3}}\] mole per second. If the concentration of A is 5 M then concentration of B after 20 min is                             [NEET 2015 (Re)]

    A)
    1.08 M

    B)
    3.60 M

    C)
    0.36 M

    D)
    0.72 M

    View Answer play_arrow
  • question_answer41) The rat e of a first -order react ion is \[\text{0}\text{.04}\,\text{mol}\,{{\ell }^{-1}}{{s}^{-1}}\]at 10 seconds and \[0.03\,\text{mol }{{\ell }^{-1}}{{s}^{-1}}\]at 20 seconds after initiation of the reaction. The half-life period of the reaction is:                                           [NEET - 2016]

    A)
    24.1 s

    B)
    34.1 s

    C)
    44.1 s

    D)
    54.1 s

    View Answer play_arrow
  • question_answer42) 
    Mechanism of a hypothetical reaction\[{{X}_{2}}+{{Y}_{2}}\to 2XY\] is given below:            [NEET-2017]
    (i) \[{{X}_{2}}\to X+X(fast)\]
    (ii) \[X+{{Y}_{2}}XY+Y(slow)\]
    (iii)\[X+Y\to XY(fast)\]
                The overall order of the reaction will be

    A)
                1.5

    B)
    1

    C)
                2

    D)
    0

    View Answer play_arrow
  • question_answer43) A first order reaction has a specific reaction rate of\[{{10}^{-2}}{{s}^{-1}}.\] How much time will it take for 20 g of the reactant to reduce to 5 g?       [NEET-2017]

    A)
    693.0 second

    B)
    238.6 second

    C)
    138.6 second

    D)
    346.5 second

    View Answer play_arrow
  • question_answer44) The correct difference between first and second order reactions is that  [NEET-2018]

    A)
    A first-order reaction can catalyzed; a second-order reaction cannot be catalyzed

    B)
    The half-life of a first-order reaction does not depend on \[{{\text{ }\!\![\!\!\text{ A }\!\!]\!\!\text{ }}_{0}}\]; the half-life of a second-order reaction does depend on \[{{\text{ }\!\![\!\!\text{ A }\!\!]\!\!\text{ }}_{0}}\]

    C)
    The rate of a first-order reaction does not depend on reactant concentrations; the rate of a second-order reaction does depend on reactant concentrations

    D)
    The rate of a first-order reaction does depend on reactant concentrations; the rate of a second-order reaction does not depend on reactant concentrations.

    View Answer play_arrow
  • question_answer45) When initial concentration of the reactant is doubled, the half-life period of a zero order reaction                          [NEET - 2018]

    A)
    Is tripled          

    B)
    Is doubled

    C)
    Is halved                     

    D)
    Remains unchanged

    View Answer play_arrow
  • question_answer46) For the chemical reaction \[{{N}_{2}}\text{(g)}+3{{H}_{2}}(g)\rightleftharpoons 2N{{H}_{3}}\left( g \right)\]  [NEET 2019]

    A)
    \[-\frac{d[{{N}_{2}}]}{dt}=\frac{1}{2}\frac{d[N{{H}_{3}}]}{dt}\]

    B)
    \[3\frac{d[{{H}_{2}}]}{dt}=2\frac{d[N{{H}_{3}}]}{dt}\]

    C)
    \[-\frac{1}{3}\frac{d[{{H}_{2}}]}{dt}=-\frac{1}{2}\frac{d[N{{H}_{3}}]}{dt}\]

    D)
    \[-\frac{d[{{N}_{2}}]}{dt}=2\frac{d[N{{H}_{3}}]}{dt}\]

    View Answer play_arrow
  • question_answer47) If the rate constant for a first order reaction is k, the time (t) required for the completion of 99 % of the reaction is given by-           [NEET 2019]

    A)
    t = 4.606/k

    B)
    t = 2.303/k

    C)
    t = 0.693/k

    D)
    t = 6.909/k

    View Answer play_arrow
  • question_answer48) The rate constant for a first order reaction is\[4.606\times {{10}^{3}}{{s}^{1}}\]. The time required to reduce 2.0 g of the reactant to 0.2 g is:         [NEET 2020]

    A)
    200 s

    B)
    500 s

    C)
    1000 s

    D)
    100 s

    View Answer play_arrow
  • question_answer49) An increase in the concentration of the reactants of a reaction leads to change in         [NEET 2020]

    A)
    heat of reaction

    B)
    threshold energy

    C)
    collision frequency

    D)
    activation energy

    View Answer play_arrow

Study Package

NEET PYQ-Chemical Kinetics
 

   


You need to login to perform this action.
You will be redirected in 3 sec spinner