Solved papers for NEET Physics Kinetic Theory of Gases NEET PYQ-Kinetic Theory Of Gases

done NEET PYQ-Kinetic Theory Of Gases Total Questions - 19

  • question_answer1) The degrees of freedom of a molecule of a tridiatomic gas are:                     [AIPMT 1999]

    A)
     2   

    B)
                                  4        

    C)
     6        

    D)
                      None of these

    View Answer play_arrow
  • question_answer2) A gas is formed of molecules each molecule possessing \[f\] degrees of freedom, then the value of \[\gamma =\frac{{{C}_{P}}}{{{C}_{V}}}\] is equal to:                                                            [AIPMT 2000]

    A)
     \[\frac{2}{f}\]  

    B)
                      \[1+\frac{2}{f}\]

    C)
     \[1+\frac{f}{2}\]

    D)
                      \[f+\frac{1}{2}\]

    View Answer play_arrow
  • question_answer3) The gases carbon-monoxide (CO) and nitrogen at the same temperature have kinetic energies \[{{E}_{1}}\] and \[{{E}_{2}}\] respectively. Then:                                                                                      [AIPMT 2000]

    A)
     \[{{E}_{1}}={{E}_{2}}\]

    B)
                      \[{{E}_{1}}>{{E}_{2}}\]

    C)
     \[{{E}_{1}}<{{E}_{2}}\]       

    D)
     \[{{E}_{1}}\] and \[{{E}_{2}}\] cannot be compared

    View Answer play_arrow
  • question_answer4) The equation of state for 5g of oxygen at a pressure P and temperature T, when occupying a volume V, will be:                                                                                                                               [AIPMT (S) 2004]

    A)
     \[PV=(3/32)RT\]

    B)
          \[PV=5RT\]

    C)
     \[PV=\frac{5}{32}RT\]

    D)
                      \[PV=(5/16)RT\]

    View Answer play_arrow
  • question_answer5) The molar specific heat at constant pressure of an ideal gas is (7/2)R. The ratio of specific heat at constant pressure to that at constant volume is: [AIPMT (S) 2006]

    A)
     7/5      

    B)
          8/7

    C)
                      5/7                              

    D)
     9/7

    View Answer play_arrow
  • question_answer6) At \[10{}^\circ C\] the value of the density of a fixed mass of an ideal gas divided by its pressure is x. At \[110{}^\circ C\] this ratio is                                                                                          [AIPMPT (S) 2008]                                  

    A)
     x         

    B)
                      \[\frac{383}{283}x\]

    C)
     \[\frac{10}{110}x\]      

    D)
          \[\frac{283}{383}x\]

    View Answer play_arrow
  • question_answer7) If \[{{C}_{p}}\] and \[{{C}_{v}}\]  denote the specific heats (per unit mass) of an ideal gas of molecular weight M where R is the molar gas constant.                                                                                        [AIPMT (M) 2010]

    A)
     \[{{C}_{p}}-{{C}_{v}}=\frac{R}{{{M}^{2}}}\]        

    B)
     \[{{C}_{p}}-{{C}_{v}}=R\]

    C)
     \[{{C}_{p}}-{{C}_{v}}=\frac{R}{M}\]

    D)
          \[{{C}_{p}}-{{C}_{v}}=MR\]

    View Answer play_arrow
  • question_answer8) Liquid oxygen at 50 K is heated to 300 K at constant pressure of 1 atm. The rate of heating is constant. Which one of the following graphs represents the variation of temperature with time?                            [AIPMT (S) 2012]

    A)
                                       

    B)
     

    C)
                                       

    D)
     

    View Answer play_arrow
  • question_answer9) The molar specific heats of an ideal gas at constant pressure and volume are denoted by  \[{{C}_{p}}\] and \[{{C}_{V}}\] respectively. If \[\gamma =\frac{{{C}_{p}}}{{{C}_{V}}}\] and R is the universal gas constant, then \[{{C}_{V}}\] is equal to                                                                                                                                 [NEET 2013]

    A)
     \[\frac{1+\gamma }{1-\gamma }\]         

    B)
          \[\frac{R}{(\gamma -1)}\]

    C)
     \[\frac{(\gamma -1)}{R}\]          

    D)
          \[\gamma R\]

    View Answer play_arrow
  • question_answer10) The amount of heat energy required to raise the temperature of 1 g of helium at NTP, from \[{{T}_{1}}K\] to \[{{T}_{2}}K\] is                                                                                                                                   [NEET 2013]

    A)
     \[\frac{3}{8}{{N}_{a}}{{K}_{B}}({{T}_{2}}-{{T}_{1}})\]

    B)
          \[\frac{3}{2}{{N}_{a}}{{K}_{B}}({{T}_{2}}-{{T}_{1}})\]

    C)
     \[\frac{3}{4}{{N}_{a}}{{K}_{B}}({{T}_{2}}-{{T}_{1}})\]

    D)
          \[\frac{3}{4}{{N}_{a}}{{K}_{B}}\left( \frac{{{T}_{2}}}{{{T}_{1}}} \right)\]

    View Answer play_arrow
  • question_answer11) The mean free path of molecules of a gas, (radius r) is inversely proportional to                       [NEET 2014]

    A)
     \[{{r}^{3}}\]                          

    B)
     \[{{r}^{2}}\]

    C)
     r                     

    D)
          4 r

    View Answer play_arrow
  • question_answer12) Two vessels separately contain two ideal gases A and B at the same temperature, the pressure of A being twice that of B. Under such conditions, the density of A is found to be 1.5 times the density of B. The ratio of molecular weight of A and B is [NEET (Re) 2015]

    A)
     \[\frac{2}{3}\]             

    B)
          \[\frac{3}{4}\]

    C)
     2                    

    D)
          \[\frac{1}{2}\]

    View Answer play_arrow
  • question_answer13) The ratio of the specific heats  \[\frac{{{C}_{p}}}{{{C}_{v}}}=\gamma \] in terms of degrees of freedom (n) is given by                                                                                                      [NEET  2015]

    A)
     \[\left( 1+\frac{1}{n} \right)\]     

    B)
          \[\left( 1+\frac{n}{3} \right)\]

    C)
     \[\left( 1+\frac{2}{n} \right)\]     

    D)
          \[\left( 1+\frac{2}{n} \right)\]

    View Answer play_arrow
  • question_answer14) The molecules of a given mass of a gas have r.m.s. velocity of \[200\,\,m{{s}^{-1}}\] at \[27{{\,}^{o}}C\] and \[1.0\times {{10}^{5}}\,N{{m}^{-2}}\] pressure. When the temperature and pressure of the gas are respectively, \[127{{\,}^{o}}C\] and \[0.05\times {{10}^{5}}\,N{{m}^{-2}},\] the r.m.s. velocity of its molecules in \[m{{s}^{1}}\] is :                                                                                                                                [NEET - 2016]

    A)
     \[100\sqrt{2}\]  

    B)
          \[\frac{400}{\sqrt{3}}\]

    C)
     \[\frac{100\sqrt{2}}{3}\]           

    D)
          \[\frac{100}{3}\]

    View Answer play_arrow
  • question_answer15)            
    At what temperature will the rms speed of oxygen molecules become just sufficient for escaping from the Earth's atmosphere?
    (Given :                                    [NEET - 2018]
    Mass of oxygen molecule \[\text{(m)=2}\text{.76 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{--26}}}\text{kg}\]
    Boltzmann's constant \[{{\text{k}}_{\text{B}}}\text{=1}\text{.38 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{--23}}}\text{J}{{\text{K}}^{\text{--1}}}\text{)}\]

    A)
     \[\text{5}\text{.016 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}\text{ K}\]

    B)
          \[\text{8}\text{.360 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}\text{ K}\]

    C)
     \[\text{2}\text{.508 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}\text{ K}\]

    D)
          \[\text{1}\text{.254 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}\text{ K}\]

    View Answer play_arrow
  • question_answer16) Increase in temperature of a gas filled in a container would lead to-                                                     [NEET 2019]

    A)
     Decrease in its pressure

    B)
     Decrease in intermolecular distance

    C)
     Increase in its mass

    D)
     Increase in its kinetic energy

    View Answer play_arrow
  • question_answer17) A cylinder contains hydrogen gas at pressure of 249 kPa and temperature \[27{}^\circ C\].                 [NEET 2020] Its density is : \[(R=8.3\text{ }J\text{ }mo{{l}^{1}}\text{ }{{K}^{1}})\]

    A)
     \[0.2\text{ }kg/{{m}^{3}}\]     

    B)
          \[0.1\text{ }kg/{{m}^{3}}\]

    C)
     \[0.02\text{ }kg/{{m}^{3}}\]   

    D)
          \[0.5\text{ }kg/{{m}^{3}}\]

    View Answer play_arrow
  • question_answer18) The mean free path for a gas, with molecular diameter d and number density n can be expressed as:     [NEET 2020]

    A)
     \[\frac{1}{\sqrt{2}n\pi {{d}^{2}}}\]    

    B)
          \[\frac{1}{\sqrt{2}{{n}^{2}}\pi {{d}^{2}}}\]

    C)
     \[\frac{1}{\sqrt{2}{{n}^{2}}{{\pi }^{2}}{{d}^{2}}}\]         

    D)
          \[\frac{1}{\sqrt{2}n\pi d}\]        

    View Answer play_arrow
  • question_answer19) The average thermal energy for a mono-atomic gas is : (\[{{k}_{B}}\]is Boltzmann constant and T, absolute temperature)                                                                                                                   [NEET 2020]

    A)
     \[\frac{3}{2}{{k}_{B}}T\]       

    B)
          \[\frac{5}{2}{{k}_{B}}T\]

    C)
     \[\frac{7}{2}{{k}_{B}}T\]       

    D)
          \[\frac{1}{2}{{k}_{B}}T\]

    View Answer play_arrow
  • Study Package

    NEET PYQ-Kinetic Theory Of Gases
     

       


    You need to login to perform this action.
    You will be redirected in 3 sec spinner