Punjab Medical Punjab - MET Solved Paper-2009

  • question_answer
    For a black body at temperature \[{{727}^{o}}C\] its radiating power is \[60\,\,W\] and temperature of surrounding is\[{{227}^{o}}C\]. If the temperature of the black body is changed to\[{{1227}^{o}}C\], then its radiating power will be

    A) \[120\,\,W\]                      

    B) \[240\,\,W\]

    C) \[304\,\,W\]                      

    D) \[320\,\,W\]

    Correct Answer: D

    Solution :

    From Stefans-Boltzmann law                   \[E=\sigma ({{T}^{4}}-T_{0}^{4})\]                 \[\frac{{{E}_{2}}}{{{E}_{1}}}=\frac{(T_{2}^{4}-T_{0}^{4})}{(T_{1}^{4}-T_{0}^{4})}\] \[\Rightarrow \]               \[{{E}_{2}}=\left( \frac{T_{2}^{4}-T_{0}^{4}}{T_{1}^{4}-T_{0}^{4}} \right){{E}_{1}}\]                          ? (i) Here\[{{E}_{1}}=60W,\,\,{{T}_{0}}={{227}^{o}}C=500K\],                 \[{{T}_{1}}={{727}^{o}}C=1000K\],                 \[{{T}_{2}}={{1227}^{o}}C=1500K\] From Eq. (i), we get \[\therefore \]  \[{{E}_{2}}=\frac{{{(1500)}^{4}}-{{(500)}^{4}}}{{{(1000)}^{4}}-{{(500)}^{4}}}\times 60\]                      \[=\frac{{{(500)}^{4}}[{{3}^{4}}-1]}{{{(500)}^{4}}[{{2}^{4}}-1]}\times 60\]                      \[=\frac{80}{15}\times 60=320\,\,W\]


You need to login to perform this action.
You will be redirected in 3 sec spinner