RAJASTHAN ­ PET Rajasthan PET Solved Paper-2008

  • question_answer
    If \[{{a}_{1}},{{a}_{2}},{{a}_{3}},....{{a}_{n}}\]are in AP when\[{{a}_{i}}>0\]for all\[i\], then the sum of the series \[\frac{1}{\sqrt{{{a}_{1}}}+\sqrt{{{a}_{2}}}}+\frac{1}{\sqrt{{{a}_{2}}}+\sqrt{{{a}_{3}}}}+\frac{1}{\sqrt{{{a}_{3}}}+\sqrt{{{a}_{4}}}}\] \[+....+\frac{1}{\sqrt{{{a}_{n-1}}}+\sqrt{{{a}_{n}}}}\]is

    A)  \[\frac{n+1}{\sqrt{{{a}_{1}}+{{a}_{n}}}}\]

    B)  \[\frac{n+1}{\sqrt{{{a}_{1}}}-\sqrt{{{a}_{n}}}}\]

    C)  \[\frac{n+1}{\sqrt{{{a}_{1}}}+\sqrt{{{a}_{n}}}}\]

    D)  \[\frac{n-1}{\sqrt{{{a}_{1}}}+\sqrt{{{a}_{n}}}}\]

    Correct Answer: D

    Solution :

     Given,\[{{a}_{1}},{{a}_{2}},....{{a}_{n}}\]are in AP. \[\therefore \] \[{{a}_{2}}-{{a}_{1}}={{a}_{3}}-{{a}_{2}}=......={{a}_{n}}-{{a}_{n-1}}=d\] (say) where d is the common difference. Now, \[\frac{1}{\sqrt{{{a}_{2}}}+\sqrt{{{a}_{1}}}}+\frac{1}{\sqrt{{{a}_{3}}}+\sqrt{{{a}_{2}}}}+.....\] \[+\frac{1}{\sqrt{{{a}_{n}}}+\sqrt{{{a}_{n-1}}}}\] \[=\frac{\sqrt{{{a}_{2}}}-\sqrt{{{a}_{1}}}}{{{a}_{2}}-{{a}_{1}}}+\frac{\sqrt{{{a}_{3}}}-\sqrt{{{a}_{2}}}}{{{a}_{3}}-{{a}_{2}}}+....+\frac{\sqrt{{{a}_{n}}}-\sqrt{{{a}_{n-1}}}}{{{a}_{n}}-{{a}_{n-1}}}\] \[=\frac{1}{d}(\sqrt{{{a}_{n}}}-\sqrt{{{a}_{1}}})\] \[=\frac{{{a}_{n}}-{{a}_{1}}}{(\sqrt{{{a}_{n}}}+\sqrt{{{a}_{1}}})}\] \[=\frac{1}{d}\left( \frac{(n-1)d}{\sqrt{{{a}_{n}}}+\sqrt{{{a}_{1}}}} \right)\] \[=\frac{n-1}{\sqrt{{{a}_{n}}}+\sqrt{{{a}_{1}}}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner