10th Class Mathematics Solved Paper - Mathematics-2016 Outside Delhi Set-III

  • question_answer
    The sums of first n terms of three arithmetic progressions are \[{{S}_{1}},{{S}_{2}}\] and \[{{S}_{3}}\] respectively. The first term of each A.P. is 1 and their common differences are 1, 2 and 3 respectively. Prove that \[{{S}_{1}}+{{S}_{3}}=2{{S}_{2}}\].

    Answer:

    Given, first term of each \[A.P(a)=1\].
    and their common differences are 1, 2 and 3.
    \[\therefore {{S}_{1}}=\frac{n}{2}[2a+(n-1){{d}_{1}}]\]
                     \[=\frac{n}{2}(2+(n-1)1)=\frac{n}{2}(n+1)\]
                \[{{S}_{2}}=\frac{n}{2}[2a+(n-1){{d}_{2}}]\]
                     \[=\frac{n}{2}(2+(n-1)2)=\frac{n}{2}(2n)={{n}^{2}}\]
    and       \[{{S}_{3}}=\frac{n}{2}[2a+(n-1){{d}_{3}}]\]
                     \[=\frac{n}{2}(2+(n-1)3)=\frac{n}{2}(3n-1)\]
    Now,     \[{{S}_{1}}+{{S}_{3}}=\frac{n}{2}(n+1)+\frac{n}{2}(3n-1)\]
                            \[=\frac{n}{2}(n+1+3n-1)=4n\times \frac{n}{2}=2{{n}^{2}}\]
                            \[=2{{S}_{2}}\]
    \[\therefore {{S}_{1}}+{{S}_{3}}=2{{S}_{2}}\]                       Hence Proved.


You need to login to perform this action.
You will be redirected in 3 sec spinner