10th Class Mathematics Solved Paper - Mathematics-2016

  • question_answer
    In the figure if \[\angle ABD=\angle XYD=\angle CDB=90{}^\circ .\text{ }AB=a,XY=c\] and \[CD=b\], then prove that\[c\text{ (}a+b)=ab\].

    Answer:

    To prove: \[c\text{ (}a+b)=ab\]
    In \[\Delta \text{ }ABD\]& \[\Delta \text{ }DXY\]
                            \[\angle B=\angle XYD\]              [Each \[90{}^\circ \]]
                            \[\angle XDY=\angle ADB\]                     [Common]
    So by AA similarity
                           \[\Delta \text{ }DAB\tilde{\ }\Delta \text{ }DXY\]
    \[\therefore \]                  \[\frac{DY}{DB}=\frac{XY}{AB}\]
                            \[DY=\frac{c}{a}(BD)\]                                                  ?(i)
    In \[\Delta \text{ }BCD\] & \[\Delta \text{ }BYX\]
                        \[\angle XYB=\angle D\]                  [Each \[90{}^\circ \]]
                       \[\angle CBD=\angle XBY\]              [Common]
    So by AA similarity,
                      \[\Delta \text{ }BYX\tilde{\ }\Delta \text{ }BDC\]
                           \[\frac{BY}{BD}=\frac{XY}{CD}\]
                           \[BY=\frac{c}{b}(BD)\]                                                   ...(ii)
    Adding eq. (i) and eq. (ii)
                   \[DY+BY=-\,(BD)+\frac{c}{b}(BD)\]
                            \[BD=BD\left[ \frac{c}{a}+\frac{c}{b} \right]\]
                            \[\frac{BD}{BD}=\left[ \frac{cb\,\,\,\,\,ca}{ab} \right]\]
                                \[1=\frac{c(a+b)}{ab}\]
                       \[c(a+b)=ab\]                                             Hence Proved


You need to login to perform this action.
You will be redirected in 3 sec spinner