10th Class Mathematics Solved Paper - Mathematics-2018

  • question_answer Prove that: \[\frac{\sin \,A-2\,{{\sin }^{3}}A}{2\,co{{s}^{3}}A-\cos \,A}=\tan \,A\].

    Answer:

    L.H.S. \[=\frac{\sin \,A-2\,{{\sin }^{3}}A}{2\,{{\cos }^{3}}A-\cos \,A}\]
                              \[=\frac{\sin \,A\left( 1-2\,{{\sin }^{2}}A \right)}{\cos \,A\left( 2{{\cos }^{2}}\,A-1 \right)}\]
                               \[=\frac{\sin \,A}{\cos \,A}\frac{\left( 1-2\,{{\sin }^{2}}A \right)}{\left[ 2\left( 1-{{\sin }^{2}}A \right)-1 \right]}\]
                                        [\[\because \] \[{{\cos }^{2}}A=1-{{\sin }^{2}}A\]]
                               \[=\frac{\sin \,A}{\cos \,A}\frac{(1-2\,si{{n}^{2}}A)}{(2-2\,si{{n}^{2}}A-1)}\]
                               \[=\frac{\sin \,A}{\cos \,A}\frac{(1-2\,si{{n}^{2}}A)}{(1-2\,si{{n}^{2}}A)}\]
                              \[=\tan \,A=\,R.H.S.\]                          Hence Proved.


adversite


You need to login to perform this action.
You will be redirected in 3 sec spinner

Free
Videos