VIT Engineering VIT Engineering Solved Paper-2007

  • question_answer
    If the molar conductance values of \[C{{a}^{2+}}\] and \[C{{l}^{-}}\] at infinite dilution are respectively \[118.88\times {{10}^{-4}}{{m}^{2}}mho\,mo{{l}^{-1}}\] and \[77.33\times {{10}^{-4}}{{m}^{2}}m\hom o{{l}^{-1}}\] then that of \[CaC{{l}_{2}}\] is (in \[{{m}^{2}}\,mho\,mo{{l}^{-1}}\]):

    A)  \[118.88\times {{10}^{-4}}\]

    B)  \[154.66\times {{10}^{-4}}\]

    C)  \[273.54\times {{10}^{-4}}\]

    D)  \[196.21\times {{10}^{-4}}\]

    Correct Answer: C

    Solution :

     From Kohlrauschs law: \[\wedge _{m}^{\infty }={{v}_{+}}\lambda _{+}^{\infty }+{{v}_{-}}\lambda _{-}^{\infty }\] For \[CaC{{l}_{2}}\] \[\wedge _{m}^{\infty }(CaC{{l}_{1}})=\lambda _{C{{a}^{2+}}}^{\infty }+2\lambda _{C{{l}^{-}}}^{\infty }\] \[=118.88\times {{10}^{-4}}+2\times 77.33\times {{10}^{-4}}\] \[=118.88\times {{10}^{-4}}+154.66\times {{10}^{-4}}\] \[=273.54\times {{10}^{-4}}{{m}^{2}}\,mho\,mo{{l}^{-1}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner