VIT Engineering VIT Engineering Solved Paper-2007

  • question_answer
    The differential equation of the system of all circles of radius \[r\] in the \[xy\] plane is :

    A)  \[{{\left[ 1+{{\left( \frac{dy}{dx} \right)}^{3}} \right]}^{2}}={{r}^{2}}{{\left( \frac{{{d}^{2}}y}{d{{x}^{2}}} \right)}^{2}}\]

    B)  \[{{\left[ 1+{{\left( \frac{dy}{dx} \right)}^{3}} \right]}^{2}}={{r}^{2}}{{\left( \frac{{{d}^{2}}y}{d{{x}^{2}}} \right)}^{3}}\]

    C)  \[{{\left[ 1+{{\left( \frac{dy}{dx} \right)}^{2}} \right]}^{3}}={{r}^{2}}{{\left( \frac{{{d}^{2}}y}{d{{x}^{2}}} \right)}^{2}}\]

    D)  \[{{\left[ 1+{{\left( \frac{dy}{dx} \right)}^{2}} \right]}^{3}}={{r}^{2}}{{\left( \frac{{{d}^{2}}y}{d{{x}^{2}}} \right)}^{3}}\]

    Correct Answer: C

    Solution :

    The equation of the family of circles of radius \[r\]is \[{{(x-a)}^{2}}+{{(y-b)}^{2}}={{r}^{2}}\] ?(i) where a and b are arbitrary constants. On differentiating Eq. (i) w.r.t. \[x,\]we get \[2(x-a)+2(y-b)\frac{dy}{dx}=0\] \[\Rightarrow \] \[(x-a)+(y-b)\frac{dy}{dx}=0\] ?(ii) On differentiating Eq. (ii) w.r.t. \[x,\]we get \[1+(y-b)\frac{{{d}^{2}}y}{d{{x}^{2}}}+{{\left( \frac{dy}{dx} \right)}^{2}}=0\] \[\Rightarrow \] \[(y-b)=-\frac{1+{{(dy/dx)}^{2}}}{{{d}^{2}}y/d{{x}^{2}}}\] ?(iii) On putting the value of \[(y-b)\] in Eq. (ii), we get \[(x-a)=\frac{\left[ 1+{{\left( \frac{dy}{dx} \right)}^{2}} \right]\frac{dy}{dx}}{\frac{{{d}^{2}}y}{d{{x}^{2}}}}\] ?(iv) On putting the value of\[(y-b)\]and \[(x-a),\] Eq. (i), we get \[\frac{{{\left[ 1+{{\left( \frac{dy}{dx} \right)}^{2}} \right]}^{2}}{{\left( \frac{dy}{dx} \right)}^{2}}}{{{({{d}^{2}}y/d{{x}^{2}})}^{2}}}+\frac{\left[ 1+{{\left( \frac{dy}{dx} \right)}^{2}} \right]}{{{({{d}^{2}}y/d{{x}^{2}})}^{2}}}={{r}^{2}}\] \[\Rightarrow \] \[{{\left[ 1+{{\left( \frac{dy}{dx} \right)}^{2}} \right]}^{3}}={{r}^{2}}\left[ \frac{{{d}^{2}}{{y}^{2}}}{d{{x}^{2}}} \right]\] This is the required differential equation.


You need to login to perform this action.
You will be redirected in 3 sec spinner