# JEE Main & Advanced Mathematics Pair of Straight Lines Question Bank

### done Equation of lines joining the origin to the point of intersection of a curve and a line and Distance between the pair of lines

• A) $g(a'-b')=g'(a+b)$

B) $g(a'+b')=g'(a+b)$

C) $g(a'+b')=g'(a-b)$

D) $g(a'-b')=g'(a-b)$

• A) 5/2

B) 5/4

C) 5

D) 0

• A) $\lambda =h$

B) $\lambda =g$

C) $\lambda =fg$

D) $\lambda$may have any value

• A) ${{x}^{2}}-{{y}^{2}}=0$

B) $xy=0$

C) $xy-{{x}^{2}}=0$

D) ${{y}^{2}}+xy=0$

• A) 4

B) $4/\sqrt{3}$

C) 2

D) $2\sqrt{3}$

• A) ${{x}^{2}}+{{y}^{2}}={{(y-x)}^{2}}$

B) ${{x}^{2}}+{{y}^{2}}+{{(y-x)}^{2}}=0$

C) ${{x}^{2}}+{{y}^{2}}=4{{(y-x)}^{2}}$

D) ${{x}^{2}}+{{y}^{2}}+4{{(y-x)}^{2}}=0$

• A) 1/2

B) -1/2

C) $1/\sqrt{2}$

D) 0

• A) ${{30}^{o}}$and ${{45}^{o}}$

B) ${{45}^{o}}$ and ${{60}^{o}}$

C) Equal

D) Parallel to axes

• A) $c=h\pm k$

B) ${{c}^{2}}={{h}^{2}}+{{k}^{2}}$

C) ${{c}^{2}}={{(h+k)}^{2}}$

D) $4{{c}^{2}}={{h}^{2}}+{{k}^{2}}$

• A) ${{(x{{y}_{1}}-y{{x}_{1}})}^{2}}={{d}^{2}}({{x}^{2}}+{{y}^{2}})$

B) ${{({{x}_{1}}{{y}_{1}}-xy)}^{2}}=({{x}^{2}}+{{y}^{2}})$

C) ${{(x{{y}_{1}}+y{{x}_{1}})}^{2}}=({{x}^{2}}-{{y}^{2}})$

D) $({{x}^{2}}-{{y}^{2}})=2({{x}_{1}}+{{y}_{1}})$

• A) Parallel to each other

B) Perpendicular to each other

C) Inclined at ${{45}^{o}}$to each other

D) None of these

• A) $1/\sqrt{10}$

B) $2/\sqrt{10}$

C) $4/\sqrt{10}$

D) $\sqrt{10}$

• A) $\frac{1}{\sqrt{5}}$

B) $\pm \frac{2}{\sqrt{5}}$

C) $\pm 3\sqrt{5}$

D) None of these

• A) ${{c}^{2}}-4=0$

B) ${{c}^{2}}-8=0$

C) ${{c}^{2}}-9=0$

D) ${{c}^{2}}-10=0$

• A) $7/\sqrt{5}$

B) $7/2\sqrt{5}$

C) $\sqrt{7}/5$

D) None of these

• A) $\frac{15}{\sqrt{10}}$

B) $\frac{1}{2}$

C) $\sqrt{\frac{5}{2}}$

D) $\frac{1}{\sqrt{10}}$

• A) ${{(x+y)}^{2}}=9$

B) ${{x}^{2}}+{{(3-x)}^{2}}=9$

C) $xy=0$

D) ${{(3-x)}^{2}}+{{y}^{2}}=9$

• A) $2\sqrt{5}a$

B) $\sqrt{10}\,a$

C) $10\,a$

D) $5\sqrt{2}\,a$