J & K CET Engineering J and K - CET Engineering Solved Paper-2006

  • question_answer
    \[{{I}_{n}}=\int{{{\tan }^{n}}x}\,\,dx\] for \[n\ge 2,\] then \[{{I}_{n}}+{{I}_{n-2}}\] is equal to

    A)  \[{{\tan }^{n\,}}x+c\]

    B)  \[\frac{({{\tan }^{n-1}}x)}{n-1}+c\]

    C)  \[\frac{{{\tan }^{n}}x}{n}+c\]

    D)  \[n\,\,{{\tan }^{n}}x+c\]

    Correct Answer: B

    Solution :

    We have,  \[{{I}_{n}}=\int{ta{{n}^{n}}x\,dx}\] \[=\int{{{\tan }^{n-2}}\,x({{\tan }^{2}}x)\,dx}\] \[\int{{{\tan }^{n-2}}}x({{\sec }^{2}}x-1)dx\] \[\int{{{\tan }^{n-2}}x.\,\,{{\sec }^{2}}x\,dx-{{I}_{n-2}}}\] \[\Rightarrow \] \[{{I}_{n}}+{{I}_{n-2}}=\int{{{\tan }^{n-2}}}x.\,{{\sec }^{2}}x\,dx\] Put \[\tan \,x=t\] \[\Rightarrow \] \[{{\sec }^{2}}x\,\,dx=dt\] \[{{I}_{n}}+{{I}_{n-2}}=\int{{{t}^{n-2}}dt}\] \[=\frac{{{t}^{n-1}}}{n-1}+c\] \[\Rightarrow \] \[{{I}_{n}}+{{I}_{n-2}}=\frac{(tan{{\,}^{n-1}}x)}{n-1}+c\]


You need to login to perform this action.
You will be redirected in 3 sec spinner