JCECE Engineering JCECE Engineering Solved Paper-2013

  • question_answer
    \[\underset{x\to 0}{\mathop{\lim }}\,\frac{\sqrt{1-\cos x}}{x}\]is equal to

    A) \[-\frac{1}{\sqrt{2}}\]    

    B) \[\frac{1}{\sqrt{2}}\]

    C) \[0\]                     

    D)  Does not exist

    Correct Answer: B

    Solution :

    \[\sqrt{1-\cos x}=\left\{ \begin{matrix}    -\sqrt{2}\sin \frac{x}{2}, & x<0  \\    \sqrt{2}\sin \frac{x}{2}, & x\ge 0  \\ \end{matrix} \right.\] \[\therefore \]    \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\frac{\sqrt{1-\cos x}}{x}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,-\frac{\sqrt{2}\sin \frac{x}{2}}{x}=-\frac{1}{\sqrt{2}}\] and        \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\frac{\sqrt{1-\cos x}}{x}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\frac{\sqrt{2}\sin \frac{x}{2}}{x}=\frac{1}{\sqrt{2}}\] \[\because \]     \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\frac{\sqrt{1-\cos x}}{x}\ne \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\frac{\sqrt{1-\cos x}}{x}\] So, \[\underset{x\to 0}{\mathop{\lim }}\,\frac{\sqrt{1-\cos x}}{x}\]does not exist.


You need to login to perform this action.
You will be redirected in 3 sec spinner