Manipal Engineering Manipal Engineering Solved Paper-2013

  • question_answer
    If\[\frac{1}{x(x+1)(x+2)...(x+n)}=\frac{{{A}_{0}}}{x}+\frac{{{A}_{1}}}{x+1}\]\[+\frac{{{A}_{2}}}{x+2}+...+\frac{{{A}_{n}}}{x+n}\] then \[{{A}_{r}}\] is equal to

    A) \[\frac{r!{{(1)}^{r}}}{(n-r)!}\]                     

    B) \[\frac{{{(-1)}^{r}}}{r!(n-r)!}\]

    C) \[\frac{1}{r!(n-r)!}\]       

    D)         None of these

    Correct Answer: B

    Solution :

    We have, \[\frac{1}{x(x+1)(x+2)...(x+n)}=\frac{{{A}_{0}}}{x}+\frac{{{A}_{1}}}{x+1}+...+\] \[\frac{{{A}_{r}}}{x+r}+...+\frac{{{A}_{n}}}{x+n}\] \[\Rightarrow \]\[1={{A}_{0}}(x+1)(x+2)...(x+n)\] \[+...+{{A}_{r}}x(x+1)(x+2)...(x+r-1)(x+r+1)\]                 \[...(x+n)+...+{{A}_{n}}x(x+1)...(x+n-1)\] Putting\[x=-r\], we get; \[1={{A}_{r}}(-r)(-r+1)(-r+2)...(-3)(-2)(-1)(1)(2)\]                                                                 \[...(n-r)\] \[\Rightarrow \,1={{A}_{r}}{{(-1)}^{r}}\{r(r-1)\,(r-2)\,...(3\cdot \,2\cdot 1\}\]                                                 \[(1\cdot 2\cdot 3...(n-r))\] \[\Rightarrow \]               \[{{A}_{r}}={{(-1)}^{r}}/r!(n-r)!\]


You need to login to perform this action.
You will be redirected in 3 sec spinner