Manipal Medical Manipal Medical Solved Paper-2013

  • question_answer
    A sphere at temperature 600 K is placed in environment of temperature 200 K, its cooling rate is H. If the temperature is reduced to 400 K, the cooloing is same environment will be

    A)  \[\frac{H}{16}\]

    B)  \[\left( \frac{9}{27} \right)H\]

    C)  \[\left( \frac{16}{3} \right)H\]

    D)  \[\left( \frac{3}{16} \right)H\]

    Correct Answer: D

    Solution :

     From Stefans law, the total radiant energy emitted per second per unit surface area of a black body is proportional to the fourth power of the absolute temperature of the body. That is \[E=\sigma {{T}^{4}}\] where, \[\sigma \]is Stefans constant. When sphere cools from 600 K to 200 K, energy 400 K to 200 K then. \[H=\sigma [{{(600)}^{4}}-{{(400)}^{4}}]\] \[\frac{H}{H}=\frac{[{{(600)}^{4}}-{{(200)}^{4}}]}{[{{(600)}^{4}}-{{(400)}^{4}}]}\] Using\[{{a}^{4}}-{{b}^{4}}=({{a}^{2}}-{{b}^{2}})({{a}^{2}}+{{b}^{2}}),\]we have \[\frac{H}{H}=\frac{[{{(600)}^{2}}-{{(200)}^{2}}]}{[{{(600)}^{2}}-{{(400)}^{2}}]}\times \frac{[{{(600)}^{2}}+{{(200)}^{2}}]}{[{{(600)}^{2}}+{{(400)}^{2}}]}\] \[\frac{H}{H}=\frac{32}{12}\times \frac{40}{20}=\frac{16}{3}\] \[H=\frac{3}{16}H\]


You need to login to perform this action.
You will be redirected in 3 sec spinner