11th Class Physics Systems Of Particles & Rotational Motion / कणों के निकाय तथा घूर्णी गति

  • question_answer 54)
                      Find the centre of mass of a uniform (a) half-disc, (b) quarter-disc.                

    Answer:

                      (a)                                 If M is the mass of the half-disc, of radius R, then mass per unit area of the half-disc,                 \[\sigma =\frac{M}{\pi {{R}^{2}}/2}=\frac{2M}{\pi {{R}^{2}}}\]                 Let us consider an element (which is a circular wire) of this disc between \[r\]  and \[(r+dr)\].                 Area of the element \[=\frac{1}{2}[\pi {{(r+dr)}^{2}}-\pi {{r}^{2}}]\]                 \[=\frac{\pi }{2}[{{r}^{2}}+{{(dr)}^{2}}+2rdr-{{r}^{2}}]\]                  \[=\pi rdr\]                         Mass of the element,                 \[dm=(\pi rdr)\sigma =(\pi rdr)\left( \frac{2M}{\pi {{R}^{2}}} \right)=\frac{2Mr}{{{R}^{2}}}dr\]                 (i) \[{{x}_{CM}}=0\]                 (ii) \[{{y}_{CM}}=\frac{1}{M}\int_{{}}^{{}}{y}dm=\frac{1}{M}\int\limits_{0}^{R}{\left( \frac{2r}{\pi } \right)}\left( \frac{2Mr}{{{R}^{2}}}dr \right)\]                 [as it can be shown that \[y=2r/\pi \]]                 \[=\frac{4}{\pi {{R}^{2}}}\int\limits_{0}^{R}{{{r}^{2}}}dr=\frac{4}{\pi {{R}^{2}}}\left( \frac{{{R}^{3}}}{3} \right)=\frac{4R}{3\pi }\]                 Thus, the CM of the half-disc is \[(0,\,4R/3\pi )\].                 Comment: We can use the Theorem of Pappus-Guldinus* to find the CM of the semicircular disc. It state that                 \[V=2\pi {{y}_{CM}}A\]                 Where \[V\] is the volume of a sphere (of radius R), \[2\pi {{y}_{CM}}\] is the distance travelled by the Cm of the semicircle in one revolution about X-axis and A is the area of the semicircle.                 Thus, \[\frac{4\pi }{3}{{R}^{3}}=2\pi ({{y}_{CM}})\,\left( \frac{1}{2}\pi {{R}^{2}} \right)\]                 or \[{{y}_{CM}}=\frac{3}{{{\pi }^{2}}{{R}^{2}}}=\frac{4R}{3\pi }\]                 (b)                                 For quarter-disc                 \[\sigma =\frac{M}{\pi {{R}^{2}}/4}=\frac{4M}{\pi {{R}^{2}}},\]                   area of the element \[=\frac{1}{2}\pi rdr,\]                 \[dm=\left( \frac{1}{2}\pi rdr \right)\sigma =\frac{2Mr}{{{R}^{2}}}dr\]                    \[{{x}_{CM}}=\frac{1}{M}\int_{{}}^{{}}{xdm}=\frac{1}{M}\int\limits_{0}^{R}{\left( \frac{2r}{\pi } \right)}\left( \frac{2Mr}{{{R}^{2}}}dr \right)=\frac{4R}{3\pi }\]                 [as\[x=y=\frac{2r}{\pi }\]]                 Similarly, \[{{y}_{CM}}=\frac{1}{M}\int_{{}}^{{}}{ydm}=\frac{4R}{3\pi }\]                 Thus, the CM of the quarter disc is \[\left( \frac{4R}{3\pi },\,\frac{4R}{3\pi } \right)\].                


You need to login to perform this action.
You will be redirected in 3 sec spinner