12th Class Mathematics Relations and Functions

  • question_answer 39)
    NCERT TEXT BOOKS EXERCISE 1.3 E1. Let f : {1, 3, 4}  {1, 2, 5} and g : {1, 2, 5}  {1, 3} be given by f = {(1, 2), (3, 5), (4, 1)} and g = {(1, 3), (2, 3), (5, 1)}. Write down gof. Sol. Given f = {(1, 2), (3, 5), (4, 1)}             Here Rf = {1, 2, 5} = Dg and Df = {1, 3, 4}             Now, (gof) (1) = g(f(1)) = g(2) = 3       (gof)(3) = g(f(3)) = g(5) = 1       (fog) (4) = g(f(4)) = g(1) = 3       So, gof = {(1, 3), (3,1), (4,3)} E2. Let f, g and h be function from R to R.       show that (f + g) oh = foh + goh       (f.g)oh = (foh).(goh) Sol. Let  be any element             = f(h(x)+ g(h(x))       = (foh) (x) + (goh) (x)       = (foh + goh) (x)       = (foh + goh) (x)             Also, ((f.g) oh) (x) = (f.g) (h(x))             = f(h(x)).g(h(x))             = (foh)(x). (goh)(x)             = ((foh).(goh) (x)             which is proved. E3. Find gof and fog. If (i)     f(x) = |x| and g(x) = |5x ? 2| (ii)    f(x) = 8x3 and g(x) = x1/3 Sol. (i) Given       f(x) = |x|, g(x) = |5x ? 2|       (gof) (x) = g(f(x)) = g(|x|) = |5|x|?2|       (fog) (x) = g(g(x)) = f(|5x ? 2|)       = ||5x ? 2|| = |5x ? 2|       (ii) Given f(x) = 8x3 and g(x) = x1/3           (gof) (x) = g(f(x)) = g(8x3) =       E4. If  show that  (fof) (x) = x for all  What is the inverse of f? Sol. Given f(x) =                  (fof) = f(f(x)) =                         E5. State with reason whether following functions have inverse. (i)     f : {1, 2, 3, 4}  {10} with       f = {(1, 10), (2, 10), (3, 10), (4, 10)} (ii)   g : {5, 6, 7, 8}  {1, 2, 3, 4} with       g = {(5, 4), (6, 3), (7, 4) (8, 2)} (iii)  h : {2, 3, 4, 5}  {7, 9, 11, 13} with       h : {(2, 7), (3, 9), (4, 11), (5, 13)}. Sol. (i)  f : {1, 2, 3, 4} {10}       f(1) = 10, f(2) = 10, f(3) = 10, f(4) = 10              is not one-one. (ii)    g : {5, 6, 7, 8}  {1, 2, 3, 4}             Here g(5) = 4 and g(7) = 4              for              is not one-one.       (iii)  h : {2, 3, 4, 5}  {7, 9, 11, 13}              = 7, h(3) = 9, h(4) = 11, h (5) = 13                          is one-one.       Also for every  there exists distinct value of x in {2, 3, 4, 5}        function ?h? is onto.       Hence function ?h? is invertible.        is given by       E6. Show that f : [?1, 1] , given by  is one-one. Find the inverse of the function f : [?1, 1]  Rnage f. Sol.       To find range of f : Let y = f(x)                               Injectivity : Let x1, x2                               To find inverse of f : Let y = f(x)                   i.e.,       E7. Consider f : R  R given by f(x) = 4x +| 3. Show that f is invertible. Find the inverse of f. Sol. Given f(x) = 4x + 3, Df = Injectivity : Let x1, x2 be any two elements of R                    is one-one. Surjectivity: Let then y = f(x)                    Corresponding to each element y of R, there exists a unique element  of R such that        is onto.        is one-one and onto function.        exists. To find inverse of f :             E8. Consider f : R+ is given by f(x) = x2 + 4 show that f is invertible with the inverse f-1 of given by  where R+ is set of all non negative real numbers. Sol. Given f(x) = x2 + 4, Df = R+ = [0, )       Injectivity : Let x1, x2 be any two elements of R+ such that f(x1) = f(x2)                   But both x1 and x2 are positive real numbers       Therefore x1 = x2       So f : R+  is one-one.       Surjectivity : Let then y = f(x)                    Corresponding to every element y of  there exists a unique element  such that        is onto.       Hence f is both one-one and onto             To find inverse of f :             E9. Consider f : R+  given by f(x) = 9x2 + 6x ?5. Show that f is invertible with Sol. Given f(x) = 9x2 + 6x ? 5, Df = R+       Injectivity : Let x1, x2 be any two elements of R+ such that f(x1) = f(x2)                                                       Surjective : Let y be any element of [?5, ) then       y = f(x)                         Since , therefore  is not possible.                    co-domain        is onto.        is both one-one and onto.        exists.       To find inverse of f :                               E10. Let f :  be an invertible function. Show that f has unique inverse. Sol. Let g1 and g2 are two inverses of f       Therefore for al       (fog1) (y) = f(g1(y)) = y                                      is invertible function  is one-one]              inverse of f is unique. E11. Consider f : {1, 2, 3}  {a, b, c} given by f(1) = a, f(2) = b and f(3) = c. Find f?1 and show that (f?1)?1 = f.       Sol. Given f : {1, 2, 3}  {a, b, c}              for distinct values of x in {1, 2, 3}, there are distinct values of y in {a, b, c}.        is onto.       Hence f is both one-one and onto.        is invertible.       and                       Now for distinct values of x in {a, b, c}, there are distinct values of y in {1, 2, 3}        is one-one.                       Also for every  there exists a unique element      

    Answer:

    Let g1 and g2 are two inverses of f       Therefore for al       (fog1) (y) = f(g1(y)) = y                                      is invertible function  is one-one]              inverse of f is unique.  


You need to login to perform this action.
You will be redirected in 3 sec spinner