# 9th Class Mathematics Logarithms Antilogarithms

Antilogarithms

Category : 9th Class

### Antilogarithms

The logarithm of a number always contains two parts which are characteristic and mantissa. The integral part is known as characteristic and the decimal part is known as mantissa. Mantissa is always kept positive. The number whose logarithm is $x$ is called the antilogarithm of $x$ and is denoted by antilog $x$.

The value of ${{\log }_{343}}7$ is:

(a) 0

(b) 7

(c) $\frac{1}{3}$

(d) $\frac{1}{7}$

(e) None of these

Explanation:

let ${{\log }_{343}}7=x,$ then ${{343}^{x}}=7$

$\Rightarrow$${{({{7}^{3}})}^{x}}=7$$\Rightarrow$${{7}^{3x}}=7$$\Rightarrow$$3x=1$$\Rightarrow$$x=\frac{1}{3}$

If $\log 2+\frac{1}{2}\log x+\frac{1}{2}\log y=\log (x+y)$, then:

(a) $x=y$

(b) $x+y=1$

(c) $x=2y$

(d) $x-y=1$

(e) None of these

Explanation:

$\log 2+\frac{1}{2}\log x+\frac{1}{2}\log y=\log (x+y)$

$\Rightarrow$$\log (2\times \sqrt{x}\times \sqrt{y})=\log (x+y)$

$\Rightarrow$${{(x-y)}^{2}}=0$

$\Rightarrow$    $x=y$

#### Other Topics

LIMITED OFFER HURRY UP! OFFER AVAILABLE ON ALL MATERIAL TILL TODAY ONLY!

You need to login to perform this action.
You will be redirected in 3 sec