-
question_answer1)
\[\frac{\frac{1}{2\,!}+\frac{1}{4\,!}+\frac{1}{6\,!}+.....\infty }{1+\frac{1}{3\,!}+\frac{1}{5\,!}+\frac{1}{7\,!}+.....\infty }=\]
A)
\[\frac{e+1}{e-1}\] done
clear
B)
\[\frac{e-1}{e+1}\] done
clear
C)
\[\frac{{{e}^{2}}+1}{{{e}^{2}}-1}\] done
clear
D)
\[\frac{{{e}^{2}}-1}{{{e}^{2}}+1}\] done
clear
View Solution play_arrow
-
question_answer2)
\[\frac{1}{1\,!}+\frac{4}{2\,!}+\frac{7}{3\,!}+\frac{10}{4\,!}+.....\infty =\]
A)
\[e+4\] done
clear
B)
\[2+e\] done
clear
C)
\[3+e\] done
clear
D)
\[e\] done
clear
View Solution play_arrow
-
question_answer3)
In the expansion of \[\frac{1+x}{1\,!}+\frac{{{(1+x)}^{2}}}{2\,!}+\frac{{{(1+x)}^{3}}}{3\,!}+.....,\] the coefficient of \[{{x}^{n}}\] will be
A)
\[\frac{1}{n\,!}\] done
clear
B)
\[\frac{1}{n\,!}+\frac{1}{(n+1)\,!}\] done
clear
C)
\[\frac{e}{n\,!}\] done
clear
D)
\[e\,\left[ \frac{1}{n\,!}+\frac{1}{(n+1)\,!} \right]\] done
clear
View Solution play_arrow
-
question_answer4)
If \[n\] is even, then in the expansion of \[{{\left( 1+\frac{{{x}^{2}}}{2\,!}+\frac{{{x}^{4}}}{4\,!}+...... \right)}^{2}}\], the coefficient of \[{{x}^{n}}\] is
A)
\[\frac{{{2}^{n}}}{n\,!}\] done
clear
B)
\[\frac{{{2}^{n}}-2}{n\,\,!}\] done
clear
C)
\[\frac{{{2}^{n-1}}-1}{n\,!}\] done
clear
D)
\[\frac{{{2}^{n-1}}}{n\,!}\] done
clear
View Solution play_arrow
-
question_answer5)
\[1+\frac{1+2}{1\,!}+\frac{1+2+3}{2\,!}+\frac{1+2+3+4}{3\,!}+....\infty =\]
A)
0 done
clear
B)
1 done
clear
C)
\[\frac{7e}{2}\] done
clear
D)
\[2\,e\] done
clear
View Solution play_arrow
-
question_answer6)
\[1.5+\frac{2.6}{1\,!}+\frac{3.7}{2\,!}+\frac{4.8}{3\,!}+.....\] is equal to
A)
\[13\,e\] done
clear
B)
\[15\,e\] done
clear
C)
\[9\,e+1\] done
clear
D)
\[5\,e\] done
clear
View Solution play_arrow
-
question_answer7)
If \[S=\sum\limits_{n=0}^{\infty }{\frac{{{(\log x)}^{2n}}}{(2n)\,!},}\] then \[S\] =
A)
\[x+{{x}^{-1}}\] done
clear
B)
\[x-{{x}^{-1}}\] done
clear
C)
\[\frac{1}{2}(x+{{x}^{-1}})\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer8)
The sum of the series\[\frac{4}{1\,!}+\frac{11}{2\,!}+\frac{22}{3\,!}+\frac{37}{4\,!}+\frac{56}{5\,!}+...\]is [Kurukshetra CEE 2002]
A)
6 e done
clear
B)
6 e ? 1 done
clear
C)
5 e done
clear
D)
5 e + 1 done
clear
View Solution play_arrow
-
question_answer9)
In the expansion of \[\frac{a+bx+c{{x}^{2}}}{{{e}^{x}}}\], the coefficient of \[{{x}^{n}}\] will be
A)
\[\frac{a\,{{(-1)}^{n}}}{n\,!}+\frac{b{{(-1)}^{n-1}}}{(n-1)\,!}+\frac{c{{(-1)}^{n-2}}}{(n-2)\,!}\] done
clear
B)
\[\frac{a}{n\,!}+\frac{b}{(n-1)\,!}+\frac{c}{(n-2)\,!}\] done
clear
C)
\[\frac{\,{{(-1)}^{n}}}{n\,!}+\frac{{{(-1)}^{n-1}}}{(n-1)\,!}+\frac{{{(-1)}^{n-2}}}{(n-2)\,!}\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer10)
The sum of the series \[1+\frac{1}{4.2\,!}+\frac{1}{16.4\,!}+\frac{1}{64.6\,!}+.....\] and inf. is [AIEEE 2005]
A)
\[\frac{e-1}{2\sqrt{e}}\] done
clear
B)
\[\frac{e+1}{2\sqrt{e}}\] done
clear
C)
\[\frac{e-1}{\sqrt{e}}\] done
clear
D)
\[\frac{e+1}{\sqrt{e}}\] done
clear
View Solution play_arrow
-
question_answer11)
If \[m,\,n\] are the roots of the equation \[{{x}^{2}}-x-1=0\], then the value of \[\frac{\left( 1+m{{\log }_{e}}3+\frac{{{(m{{\log }_{e}}3)}^{2}}}{2\,!\,}+...\infty \right)\,\,\left( 1+n{{\log }_{e}}3+\frac{{{(n{{\log }_{e}}3)}^{2}}}{2\,!\,}+..\infty \right)\,}{\left( 1+mn{{\log }_{e}}3+\frac{{{(mn{{\log }_{e}}3)}^{2}}}{2\,!}+.....\infty \right)}\]
A)
9 done
clear
B)
3 done
clear
C)
0 done
clear
D)
1 done
clear
View Solution play_arrow
-
question_answer12)
\[\frac{1}{3}+\frac{1}{2\,.\,{{3}^{2}}}+\frac{1}{3\,.\,{{3}^{3}}}+\frac{1}{4\,.\,{{3}^{4}}}+.....\infty =\] [MNR 1975]
A)
\[{{\log }_{e}}2-{{\log }_{e}}3\] done
clear
B)
\[{{\log }_{e}}3-{{\log }_{e}}2\] done
clear
C)
\[{{\log }_{e}}6\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer13)
If \[|x|<1\], then the coefficient of \[{{x}^{5}}\] in the expansion of \[(1-x){{\log }_{e}}(1-x)\] is
A)
1/2 done
clear
B)
1/4 done
clear
C)
1/20 done
clear
D)
1/10 done
clear
View Solution play_arrow
-
question_answer14)
In the expansion of \[{{\log }_{e}}\frac{1}{1-x-{{x}^{2}}+{{x}^{3}}}\], the coefficient of \[x\] is
A)
0 done
clear
B)
1 done
clear
C)
? 1 done
clear
D)
1/2 done
clear
View Solution play_arrow
-
question_answer15)
The sum of the series \[1+\frac{3}{2\,!}+\frac{7}{3\,!}+\frac{15}{4\,!}+.....\text{to}\,\infty \] is [Kerala (Engg.) 2005]
A)
\[e(e+1)\] done
clear
B)
\[e\,(1-e)\] done
clear
C)
\[3e-1\] done
clear
D)
\[3e\] done
clear
E)
(e) \[e\,(e-1)\] done
clear
View Solution play_arrow
-
question_answer16)
\[1+\frac{2}{3}-\frac{2}{4}+\frac{2}{5}-......\infty =\]
A)
\[{{\log }_{e}}3\] done
clear
B)
\[{{\log }_{e}}4\] done
clear
C)
\[{{\log }_{e}}\left( \frac{e}{2} \right)\] done
clear
D)
\[{{\log }_{e}}\left( \frac{2}{3} \right)\] done
clear
View Solution play_arrow
-
question_answer17)
The value of \[{{\log }_{e}}\left( 1+a{{x}^{2}}+{{a}^{2}}+\frac{a}{{{x}^{2}}} \right)\] is
A)
\[a\,\left( {{x}^{2}}-\frac{1}{{{x}^{2}}} \right)-\frac{{{a}^{2}}}{2}\,\left( {{x}^{4}}-\frac{1}{{{x}^{4}}} \right)+\frac{{{a}^{3}}}{3}\,\left( {{x}^{6}}-\frac{1}{{{x}^{6}}} \right)-.....\] done
clear
B)
\[a\,\left( {{x}^{2}}+\frac{1}{{{x}^{2}}} \right)-\frac{{{a}^{2}}}{2}\,\left( {{x}^{4}}+\frac{1}{{{x}^{4}}} \right)+\frac{{{a}^{3}}}{3}\,\left( {{x}^{6}}+\frac{1}{{{x}^{6}}} \right)-.....\] done
clear
C)
\[a\,\left( {{x}^{2}}+\frac{1}{{{x}^{2}}} \right)+\frac{{{a}^{2}}}{2}\,\left( {{x}^{4}}+\frac{1}{{{x}^{4}}} \right)+\frac{{{a}^{3}}}{3}\,\left( {{x}^{6}}+\frac{1}{{{x}^{6}}} \right)+.....\] done
clear
D)
\[a\,\left( {{x}^{2}}-\frac{1}{{{x}^{2}}} \right)+\frac{{{a}^{2}}}{2}\,\left( {{x}^{4}}-\frac{1}{{{x}^{4}}} \right)+\frac{{{a}^{3}}}{3}\,\left( {{x}^{6}}-\frac{1}{{{x}^{6}}} \right)+.....\] done
clear
View Solution play_arrow
-
question_answer18)
\[{{\log }_{e}}(1+x)=\sum\limits_{i=1}^{\infty }{\left[ \frac{{{(-1)}^{i+1}}{{x}^{i}}}{i} \right]}\] is defined for [Roorkee 1990]
A)
\[x\in (-1,\,1)\] done
clear
B)
Any positive (+) real x done
clear
C)
\[x\in (-1,\,1]\] done
clear
D)
Any positive (+) real \[x(x\ne 1)\] done
clear
View Solution play_arrow
-
question_answer19)
If \[y=2{{x}^{2}}-1\], then \[\left[ \frac{1}{y}+\frac{1}{3{{y}^{3}}}+\frac{1}{5{{y}^{5}}}+.... \right]\] is equal to
A)
\[\frac{1}{2}\left[ \frac{1}{{{x}^{2}}}-\frac{1}{2{{x}^{4}}}+\frac{1}{3{{x}^{6}}}-..... \right]\] done
clear
B)
\[\frac{1}{2}\left[ \frac{1}{{{x}^{2}}}+\frac{1}{2{{x}^{4}}}+\frac{1}{3{{x}^{6}}}+..... \right]\] done
clear
C)
\[\frac{1}{2}\left[ \frac{1}{{{x}^{2}}}+\frac{1}{3{{x}^{6}}}+\frac{1}{5{{x}^{10}}}+..... \right]\] done
clear
D)
\[\frac{1}{2}\left[ \frac{1}{{{x}^{2}}}-\frac{1}{3{{x}^{6}}}+\frac{1}{5{{x}^{10}}}-..... \right]\] done
clear
View Solution play_arrow
-
question_answer20)
If \[x,\,y,z\] are three consecutive positive integers, then \[\frac{1}{2}{{\log }_{e}}x+\frac{1}{2}{{\log }_{e}}z+\frac{1}{2xz+1}+\frac{1}{3}{{\left( \frac{1}{2xz+1} \right)}^{3}}+....=\]
A)
\[{{\log }_{e}}x\] done
clear
B)
\[{{\log }_{e}}y\] done
clear
C)
\[{{\log }_{e}}z\] done
clear
D)
None of these done
clear
View Solution play_arrow