-
question_answer1)
In the given figure, \[\mathbf{AB}\parallel \mathbf{DC}\]. If \[\mathbf{x=}\frac{\mathbf{4}}{\mathbf{3}}\mathbf{y}\] and \[\mathbf{y=}\frac{\mathbf{3}}{\mathbf{5}}\mathbf{z}\], find the values of y.
A)
\[{{45}^{{}^\circ }}\] done
clear
B)
\[{{44}^{{}^\circ }}\] done
clear
C)
\[{{36}^{{}^\circ }}\] done
clear
D)
\[{{40}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer2)
Compute the value of x in the given figure if AB || DC,
A)
\[{{88}^{{}^\circ }}\] done
clear
B)
\[{{48}^{{}^\circ }}\] done
clear
C)
\[{{118}^{{}^\circ }}\] done
clear
D)
\[{{108}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer3)
In the given figure if parallel lines, EF, GFL, IJ are intersected by transversals. \[l\]and m. Where \[\mathbf{EG}=\mathbf{3}\text{ }\mathbf{cm},\mathbf{GI}=\mathbf{2}\text{ }\mathbf{cm},\text{ }\mathbf{FH}=\mathbf{6}\]cm, then HJ is
A)
8 cm done
clear
B)
9cm done
clear
C)
12cm done
clear
D)
4cm done
clear
View Solution play_arrow
-
question_answer4)
In the given figure \[\ell \parallel m\parallel \mathbf{n}\] and transversals a and b through A intersects them at A, M, K, N, L. If AN = 6 cm, NL = 24 cm , KM = 32 cm, then the length of intercept AM is
A)
8 cm done
clear
B)
6 cm done
clear
C)
12 cm done
clear
D)
10 cm done
clear
View Solution play_arrow
-
question_answer5)
In the given figure \[\mathbf{AB}\parallel \mathbf{CD}\parallel \mathbf{EF}\]. If \[\mathbf{5x}=\mathbf{4y}\] and \[\mathbf{z}=\mathbf{y}+\mathbf{10}\], then the value of w is
A)
\[{{60}^{{}^\circ }}\] done
clear
B)
\[{{50}^{{}^\circ }}\] done
clear
C)
\[{{90}^{{}^\circ }}\] done
clear
D)
\[{{70}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer6)
If \[\mathbf{AB}\parallel \mathbf{CD},\mathbf{EF}\parallel \mathbf{GH}\], then the value of a, b, c.
A)
\[a={{114}^{{}^\circ }},b={{46}^{{}^\circ }},c={{114}^{{}^\circ }}\] done
clear
B)
\[a={{104}^{{}^\circ }},b={{56}^{{}^\circ }},c={{114}^{{}^\circ }}\] done
clear
C)
\[a={{114}^{{}^\circ }},b={{26}^{{}^\circ }},c={{154}^{{}^\circ }}\] done
clear
D)
\[a={{94}^{{}^\circ }},b={{46}^{{}^\circ }},c={{54}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer7)
In the figure, \[\mathbf{AB}\parallel \mathbf{CD}.\]If \[\angle \mathbf{EAB}=\mathbf{4}{{\mathbf{5}}^{{}^\circ }}\]and \[\angle \mathbf{ECD}=\mathbf{5}{{\mathbf{5}}^{{}^\circ }}\], then \[\angle \mathbf{AEB}=\]?
A)
\[{{50}^{{}^\circ }}\] done
clear
B)
\[{{60}^{{}^\circ }}\] done
clear
C)
\[{{80}^{{}^\circ }}\] done
clear
D)
\[{{55}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer8)
P and Q are points on the opposite sides of a straight line AB. If O is a point on AB such that\[\angle \mathbf{AOP}=\angle \mathbf{BOQ}\], then which one of the following is correct?
A)
\[\angle AOQ<\angle BOP\] done
clear
B)
\[\angle AOQ>\angle BOP\] done
clear
C)
\[\angle AOP={{180}^{{}^\circ }}-\angle AOQ\] done
clear
D)
\[\angle AOP={{90}^{{}^\circ }}-\angle AOQ\] done
clear
View Solution play_arrow
-
question_answer9)
In the given figure. If \[\mathbf{PQ}\parallel \mathbf{RS},\mathbf{ZQPT}=\mathbf{11}{{\mathbf{5}}^{{}^\circ }}\] and \[\angle \mathbf{PTR}=\mathbf{1}{{\mathbf{5}}^{{}^\circ }}\], then \[\angle \mathbf{SRT}\] is equal to:
A)
\[{{145}^{{}^\circ }}\] done
clear
B)
\[{{150}^{{}^\circ }}\] done
clear
C)
\[{{135}^{{}^\circ }}\] done
clear
D)
\[{{100}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer10)
Two parallel lines are cut by a transversal then which of the following is true? |
(I) Pair of alternate interior angles are same. |
(II) Pair of corresponding angles are same. |
(III) Pair of interior angles on the same side of the transversal are complementary. |
A)
I, II, III are true done
clear
B)
I, II are true done
clear
C)
I, II are true done
clear
D)
II, III are true done
clear
View Solution play_arrow
-
question_answer11)
AB and CD are two parallel lines. PQ cuts AB and CD at E and F respectively. EL is the bisector of\[\angle \mathbf{FEB}\]. If \[\angle \mathbf{LEB}=\mathbf{5}{{\mathbf{5}}^{{}^\circ }}\]; then \[\angle \mathbf{DFQ}\] is equal to
A)
\[{{110}^{{}^\circ }}\] done
clear
B)
\[{{100}^{{}^\circ }}\] done
clear
C)
\[{{115}^{{}^\circ }}\] done
clear
D)
\[{{105}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer12)
AB and CD are two parallel lines. The points B and C are joined such that\[\angle \mathbf{ABC}=\mathbf{6}{{\mathbf{0}}^{{}^\circ }}\]. A line CE is drawn making angle of \[\mathbf{40}{}^\circ \] with the line CB, EF is drawn parallel to AB. As show in figure then \[\angle \mathbf{CEF}\] is equal to:
A)
\[{{160}^{{}^\circ }}\] done
clear
B)
\[{{150}^{{}^\circ }}\] done
clear
C)
\[{{120}^{{}^\circ }}\] done
clear
D)
\[{{135}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer13)
In the given figure, \[\mathbf{AB}\parallel \mathbf{CD}\]. Then what is the value of x?
A)
\[{{140}^{{}^\circ }}\] done
clear
B)
\[{{45}^{{}^\circ }}\] done
clear
C)
\[{{120}^{{}^\circ }}\] done
clear
D)
\[{{75}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer14)
In the given figure, if \[\mathbf{EC}\parallel \mathbf{AB},\]\[\angle \mathbf{ECD}=\mathbf{6}{{\mathbf{5}}^{{}^\circ }},\] \[\angle \mathbf{BDO}=\mathbf{2}{{\mathbf{5}}^{{}^\circ }}\], then \[\angle \mathbf{OBD}\] is to:
A)
\[{{40}^{{}^\circ }}\] done
clear
B)
\[{{65}^{{}^\circ }}\] done
clear
C)
\[{{115}^{{}^\circ }}\] done
clear
D)
\[{{70}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer15)
Two parallel lines AB and CD are intersected by a transversal line EF at M and N respectively. The lines MP and NP are the bisectors of the interior angles BMN and DNM on the same side of the transversal. Then \[\angle \,\mathbf{MPN}\] is equal to:
A)
\[{{90}^{{}^\circ }}\] done
clear
B)
\[{{45}^{{}^\circ }}\] done
clear
C)
\[{{135}^{{}^\circ }}\] done
clear
D)
\[{{60}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer16)
In the given figure, \[\mathbf{AB}\parallel \mathbf{GH}\parallel \mathbf{DE}\] and\[\mathbf{GF}\parallel \mathbf{BD}\parallel \mathbf{HI},\] \[\angle \mathbf{FGC}=\mathbf{10}{{\mathbf{0}}^{{}^\circ }}\]. Find the value of \[\angle \mathbf{CHL}\]
A)
\[{{80}^{{}^\circ }}\] done
clear
B)
\[{{120}^{{}^\circ }}\] done
clear
C)
\[{{100}^{{}^\circ }}\] done
clear
D)
\[{{160}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer17)
In the adjoining figure, \[\mathbf{AE}\parallel \mathbf{CD}\] and \[\mathbf{BC}\parallel \mathbf{ED}\], then y = ?
A)
\[{{60}^{{}^\circ }}\] done
clear
B)
\[{{70}^{{}^\circ }}\] done
clear
C)
\[{{90}^{{}^\circ }}\] done
clear
D)
\[{{75}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer18)
In the adjoining figure, \[\mathbf{AB}\parallel \mathbf{CD}\] and PQ, QR intersect AB and CD both at E, F and G, H respectively. Given that \[\angle \mathbf{PEB}=\mathbf{7}{{\mathbf{0}}^{{}^\circ }},\]\[\angle \mathbf{QHD}=\mathbf{13}{{\mathbf{0}}^{{}^\circ }}\]and \[\angle \,\mathbf{PQR=x}{}^\circ ,\] find the value of \[{{\mathbf{x}}^{{}^\circ }}\].
A)
\[{{40}^{{}^\circ }}\] done
clear
B)
\[{{10}^{{}^\circ }}\] done
clear
C)
\[{{20}^{{}^\circ }}\] done
clear
D)
\[{{30}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer19)
In the adjoining figure, A \[A\mathbf{B}\parallel \mathbf{DE}.\]\[\angle \mathbf{ABC}=\mathbf{5}{{\mathbf{7}}^{{}^\circ }}\]and\[\angle \mathbf{EDC}=\mathbf{3}{{\mathbf{3}}^{{}^\circ }}.\]Find\[\angle \mathbf{BCD}\]
A)
\[{{90}^{{}^\circ }}\] done
clear
B)
\[{{50}^{{}^\circ }}\] done
clear
C)
\[{{80}^{{}^\circ }}\] done
clear
D)
\[{{105}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer20)
In the given figure, \[\mathbf{AB}\parallel \mathbf{DE}\]. Find \[\mathbf{a{}^\circ }+\mathbf{b{}^\circ }-\mathbf{c{}^\circ }.\]
A)
\[{{160}^{{}^\circ }}\] done
clear
B)
\[{{120}^{{}^\circ }}\] done
clear
C)
\[{{180}^{{}^\circ }}\] done
clear
D)
\[{{210}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer21)
\[\mathbf{PQ}\parallel \mathbf{RS}\], as shown in the figure. Find the value of x.
A)
\[{{90}^{{}^\circ }}\] done
clear
B)
\[{{80}^{{}^\circ }}\] done
clear
C)
\[{{100}^{{}^\circ }}\] done
clear
D)
\[{{150}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer22)
In the given figure, \[\mathbf{PQ}\parallel \mathbf{LM}\parallel \mathbf{RS}\]. What is the value of \[\angle \mathbf{RLM}\]?
A)
\[{{20}^{{}^\circ }}\] done
clear
B)
\[{{155}^{{}^\circ }}\] done
clear
C)
\[{{30}^{{}^\circ }}\] done
clear
D)
\[{{45}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer23)
In the given figure,\[\mathbf{AB}\parallel \mathbf{DC}\] and \[\mathbf{DE}\parallel \mathbf{BF}\]. What is the value of x?
A)
\[{{140}^{{}^\circ }}\] done
clear
B)
\[{{150}^{{}^\circ }}\] done
clear
C)
\[{{105}^{{}^\circ }}\] done
clear
D)
\[{{120}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer24)
In the given figure, \[\mathbf{AB}\parallel \mathbf{CD},\angle \mathbf{ABE}={{95}^{{}^\circ }}\], Find \[\angle \mathbf{CDE}\]:
A)
\[{{120}^{{}^\circ }}\] done
clear
B)
\[{{110}^{{}^\circ }}\] done
clear
C)
\[{{125}^{{}^\circ }}\] done
clear
D)
\[{{100}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer25)
In the given figure, \[\mathbf{AB}\parallel \mathbf{CD}\], then \[{{\mathbf{x}}^{{}^\circ }}\]= ?
A)
\[{{40}^{{}^\circ }}\] done
clear
B)
\[{{70}^{{}^\circ }}\] done
clear
C)
\[{{30}^{{}^\circ }}\] done
clear
D)
\[{{90}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer26)
In the given figure, \[\mathbf{XY}\parallel \mathbf{PQ}\], then the value of x is:
A)
\[{{75}^{{}^\circ }}\] done
clear
B)
\[{{35}^{{}^\circ }}\] done
clear
C)
\[{{65}^{{}^\circ }}\] done
clear
D)
\[{{45}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer27)
In the given figure,\[\mathbf{AB}\parallel \mathbf{CD}\] and \[\mathbf{EF}\parallel \mathbf{DQ}\]. The value of \[\angle \mathbf{DEF}\] is:
A)
\[{{68}^{{}^\circ }}\] done
clear
B)
\[{{78}^{{}^\circ }}\] done
clear
C)
\[{{44}^{{}^\circ }}\] done
clear
D)
\[{{100}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer28)
\[\mathbf{AB}\parallel \mathbf{CD},\angle \mathbf{ABO}=\mathbf{12}{{\mathbf{8}}^{{}^\circ }},\angle \mathbf{BOD}=\mathbf{14}{{\mathbf{2}}^{{}^\circ }}\], Then, \[\angle \mathbf{ODC}\] = ?
A)
\[{{100}^{{}^\circ }}\] done
clear
B)
\[{{80}^{{}^\circ }}\] done
clear
C)
\[{{90}^{{}^\circ }}\] done
clear
D)
\[{{88}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer29)
In the given figure, \[\angle \mathbf{OAB}=\mathbf{6}{{\mathbf{5}}^{{}^\circ }},\]\[\angle \mathbf{OBA}=\mathbf{4}{{\mathbf{5}}^{{}^\circ }}\] and \[\angle \mathbf{OCD}=\mathbf{10}{{\mathbf{0}}^{{}^\circ }}\]. Then \[\angle \mathbf{ODC}\] =?
A)
\[{{20}^{{}^\circ }}\] done
clear
B)
\[{{10}^{{}^\circ }}\] done
clear
C)
\[{{30}^{{}^\circ }}\] done
clear
D)
\[{{25}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer30)
In the given figure,\[\mathbf{AB}\parallel \mathbf{DC},\]\[\angle \mathbf{BAD}=\mathbf{9}{{\mathbf{0}}^{{}^\circ }},\]\[\angle \mathbf{CBD}=\mathbf{3}{{\mathbf{8}}^{{}^\circ }}\]and\[\angle \mathbf{BCE}=\mathbf{7}{{\mathbf{5}}^{{}^\circ }}\]. Then \[\angle \mathbf{ABD}\] = ?
A)
\[{{32}^{{}^\circ }}\] done
clear
B)
\[{{37}^{{}^\circ }}\] done
clear
C)
\[{{34}^{{}^\circ }}\] done
clear
D)
\[{{35}^{{}^\circ }}\] done
clear
View Solution play_arrow