-
question_answer1)
If \[\mathbf{x=(}\sqrt{\mathbf{2}}\mathbf{+1}{{\mathbf{)}}^{\mathbf{-}\frac{\mathbf{1}}{\mathbf{3}}}}\]the value of \[\left( {{\mathbf{x}}^{\mathbf{3}}}\frac{\mathbf{1}}{{{\mathbf{x}}^{\mathbf{3}}}} \right)\] is
A)
0 done
clear
B)
\[-\sqrt{2}\] done
clear
C)
\[2\sqrt{2}\] done
clear
D)
\[3\sqrt{2}\] done
clear
View Solution play_arrow
-
question_answer2)
If \[{{\left( \mathbf{3a+1} \right)}^{\mathbf{2}}}\mathbf{+}{{\left( \mathbf{b-1} \right)}^{\mathbf{2}}}\mathbf{+}{{\left( \mathbf{2c-3} \right)}^{\mathbf{2}}}\mathbf{=0,}\] than value of \[\left( \mathbf{3a+b+2c} \right)\]is equal to:
A)
3 done
clear
B)
-1 done
clear
C)
2 done
clear
D)
5 done
clear
View Solution play_arrow
-
question_answer3)
If\[{{\mathbf{x}}^{\mathbf{2}}}\mathbf{+}{{\mathbf{y}}^{\mathbf{2}}}\mathbf{+}{{\mathbf{z}}^{\mathbf{2}}}\mathbf{+}\frac{\mathbf{1}}{{{\mathbf{x}}^{\mathbf{2}}}}\mathbf{+}\frac{\mathbf{1}}{{{\mathbf{y}}^{\mathbf{2}}}}\mathbf{+}\frac{\mathbf{1}}{{{\mathbf{z}}^{\mathbf{2}}}}\mathbf{=6}\], then the valve of \[{{\mathbf{x}}^{\mathbf{2}}}\mathbf{+}{{\mathbf{y}}^{\mathbf{2}}}\mathbf{+}{{\mathbf{z}}^{\mathbf{2}}}\]is
A)
3 done
clear
B)
4 done
clear
C)
8 done
clear
D)
16 done
clear
View Solution play_arrow
-
question_answer4)
If \[\mathbf{x+y+z}=0\] then \[\mathbf{3}\left[ \frac{{{\mathbf{x}}^{\mathbf{2}}}}{\mathbf{yz}}\mathbf{+}\frac{{{\mathbf{y}}^{\mathbf{2}}}}{\mathbf{zx}}\mathbf{+}\frac{{{\mathbf{z}}^{\mathbf{2}}}}{\mathbf{xy}} \right]\mathbf{=?}\]
A)
\[{{\left( xyz \right)}^{2}}\] done
clear
B)
\[{{x}^{2}}+{{y}^{2}}+{{z}^{2}}\] done
clear
C)
9 done
clear
D)
3 done
clear
View Solution play_arrow
-
question_answer5)
If \[\mathbf{x=3+2}\sqrt{\mathbf{2}}\] and \[\mathbf{xy=1}\], then the value of \[\frac{{{\mathbf{x}}^{\mathbf{2}}}\mathbf{-3xy+}{{\mathbf{y}}^{\mathbf{2}}}}{{{\mathbf{x}}^{\mathbf{2}}}\mathbf{+3xy+}{{\mathbf{y}}^{\mathbf{2}}}}\] is
A)
\[\frac{30}{31}\] done
clear
B)
\[\frac{70}{31}\] done
clear
C)
\[\frac{35}{31}\] done
clear
D)
\[\frac{31}{37}\] done
clear
View Solution play_arrow
-
question_answer6)
If \[\mathbf{x=}\sqrt{\mathbf{3}}\mathbf{+}\frac{\mathbf{1}}{\sqrt{\mathbf{3}}}\]and \[\mathbf{y=}\sqrt{\mathbf{3}}\mathbf{-}\frac{\mathbf{1}}{\sqrt{\mathbf{3}}}\], then the value of \[\frac{{{\mathbf{x}}^{\mathbf{2}}}}{\mathbf{y}}\mathbf{+}\frac{{{\mathbf{y}}^{\mathbf{2}}}}{\mathbf{x}}\]is
A)
\[\sqrt{3}\] done
clear
B)
\[3\sqrt{3}\] done
clear
C)
\[16\sqrt{3}\] done
clear
D)
\[2\sqrt{3}\] done
clear
View Solution play_arrow
-
question_answer7)
If \[\mathbf{a=}\frac{\sqrt{\mathbf{5}}\mathbf{-}\sqrt{\mathbf{3}}}{\sqrt{\mathbf{5}}\mathbf{+}\sqrt{\mathbf{3}}}\]and \[\mathbf{b=}\frac{\sqrt{\mathbf{5}}\mathbf{+}\sqrt{\mathbf{3}}}{\sqrt{\mathbf{5}}\mathbf{-}\sqrt{\mathbf{3}}}\] then the value of \[\frac{{{\mathbf{a}}^{\mathbf{2}}}\mathbf{-ab+}{{\mathbf{b}}^{\mathbf{2}}}}{{{\mathbf{a}}^{\mathbf{2}}}\mathbf{+ab+}{{\mathbf{b}}^{\mathbf{2}}}}\mathbf{=?}\]
A)
\[\frac{63}{61}\] done
clear
B)
\[\frac{67}{65}\] done
clear
C)
\[\frac{65}{63}\] done
clear
D)
\[\frac{69}{67}\] done
clear
View Solution play_arrow
-
question_answer8)
if \[~{{a}^{4}}+{{b}^{4}}={{x}^{2}}{{y}^{2}}\], then \[\left( {{\mathbf{a}}^{\mathbf{6}}}+{{\mathbf{b}}^{\mathbf{6}}} \right)\] equals
A)
0 done
clear
B)
1 done
clear
C)
\[{{x}^{2}}+{{y}^{2}}\] done
clear
D)
\[{{a}^{2}}{{b}^{4}}+{{a}^{2}}{{b}^{2}}\] done
clear
View Solution play_arrow
-
question_answer9)
If \[\mathbf{xy}\left( \mathbf{x}-\mathbf{y} \right)=\mathbf{1}\], then the value of \[\frac{\mathbf{1}}{{{\mathbf{x}}^{\mathbf{3}}}{{\mathbf{y}}^{\mathbf{3}}}}\mathbf{-}{{\mathbf{x}}^{\mathbf{3}}}\mathbf{+}{{\mathbf{y}}^{\mathbf{3}}}\]is:
A)
0 done
clear
B)
1 done
clear
C)
3 done
clear
D)
-3 done
clear
View Solution play_arrow
-
question_answer10)
If \[{{\left( \mathbf{a+}\frac{\mathbf{1}}{\mathbf{a}}\mathbf{~} \right)}^{\mathbf{2}}}\mathbf{=3}\], then the value of \[{{\mathbf{a}}^{\mathbf{206}}}\mathbf{+}{{\mathbf{a}}^{\mathbf{200}}}\mathbf{+}{{\mathbf{a}}^{\mathbf{90}}}\mathbf{+}{{\mathbf{a}}^{\mathbf{84}}}\mathbf{+}{{\mathbf{a}}^{\mathbf{18}}}\mathbf{+}{{\mathbf{a}}^{\mathbf{12}}}\mathbf{+}{{\mathbf{a}}^{\mathbf{6}}}\mathbf{+1}\]is
A)
0 done
clear
B)
1 done
clear
C)
84 done
clear
D)
206 done
clear
View Solution play_arrow
-
question_answer11)
If \[\mathbf{x+}\frac{\mathbf{1}}{\mathbf{x}}\mathbf{=3}\], then the value of \[\frac{{{\mathbf{x}}^{\mathbf{4}}}\mathbf{+3}{{\mathbf{x}}^{\mathbf{3}}}\mathbf{+5}{{\mathbf{x}}^{\mathbf{2}}}\mathbf{+3x+1}}{{{\mathbf{x}}^{\mathbf{4}}}\mathbf{+1}}\]
A)
3 done
clear
B)
5 done
clear
C)
7 done
clear
D)
9 done
clear
View Solution play_arrow
-
question_answer12)
If \[\mathbf{x+y+z=6}\], then the value of \[{{\left( \mathbf{x-1} \right)}^{\mathbf{3}}}\mathbf{+}{{\left( \mathbf{y-2} \right)}^{\mathbf{3}}}\mathbf{+}{{\left( \mathbf{z-3} \right)}^{\mathbf{3}}}\] is
A)
\[3\left( x-1 \right)\left( y+2 \right)\left( z-3 \right)\] done
clear
B)
\[3\left( x+1 \right)\left( y-2 \right)\left( z-3 \right)\] done
clear
C)
\[3\left( x-1 \right)\left( y-2 \right)\left( z+3 \right)\] done
clear
D)
\[3\left( x-1 \right)\left( y-2 \right)\left( z-3 \right)\] done
clear
View Solution play_arrow
-
question_answer13)
If \[\mathbf{x}=\mathbf{999}\], then the value of \[\sqrt[\mathbf{3}]{\mathbf{x}\left( {{\mathbf{x}}^{\mathbf{2}}}\mathbf{+3x+3} \right)\mathbf{+1}}\]is
A)
1000 done
clear
B)
999 done
clear
C)
998 done
clear
D)
1002 done
clear
View Solution play_arrow
-
question_answer14)
The degree of the polynomial \[\frac{{{\mathbf{x}}^{\mathbf{4}}}\mathbf{+}{{\mathbf{x}}^{\mathbf{5}}}\mathbf{-}{{\mathbf{x}}^{\mathbf{8}}}}{{{\mathbf{x}}^{\mathbf{3}}}}\] is
A)
2 done
clear
B)
3 done
clear
C)
4 done
clear
D)
5 done
clear
View Solution play_arrow
-
question_answer15)
What is the remainder when \[\mathbf{2}{{\mathbf{x}}^{\mathbf{2}}}-\mathbf{3x}+\mathbf{5}\] is divided by\[\mathbf{2x}-1\]?
A)
2 done
clear
B)
3 done
clear
C)
4 done
clear
D)
5 done
clear
View Solution play_arrow
-
question_answer16)
2 is a root of \[\mathbf{k}{{\mathbf{x}}^{\mathbf{4}}}-\mathbf{13}{{\mathbf{x}}^{\mathbf{3}}}+\mathbf{k}{{\mathbf{x}}^{\mathbf{2}}}+\mathbf{12x}.\]What is the value of k?
A)
\[k=1\] done
clear
B)
\[k=2\] done
clear
C)
\[k=3\] done
clear
D)
\[k=4\] done
clear
View Solution play_arrow
-
question_answer17)
If \[\mathbf{x}+\mathbf{1}\text{ }\mathbf{and}\text{ }\mathbf{x}-\mathbf{1}\] are factors of \[\mathbf{f}\left( \mathbf{x} \right)\mathbf{=}{{\mathbf{x}}^{\mathbf{4}}}\mathbf{+3ax+b,}\] then the value of \[\mathbf{3a}+\mathbf{2b}\] is
A)
5 done
clear
B)
-1 done
clear
C)
4 done
clear
D)
-6 done
clear
View Solution play_arrow
-
question_answer18)
If the area of rectangle is 3x2 + 6xy + 3y2 and its breadth is \[\mathbf{x+y,}\]then its length is
A)
\[x-2y\] done
clear
B)
\[-x+2y\] done
clear
C)
\[3x+3y\] done
clear
D)
\[x+y\] done
clear
View Solution play_arrow
-
question_answer19)
If \[\mathbf{(x+2)}\] and \[\left( \mathbf{x+3} \right)\] are two factors of \[{{\mathbf{x}}^{\mathbf{3}}}+\mathbf{9}{{\mathbf{x}}^{\mathbf{2}}}+\mathbf{26x}+\mathbf{24},\]then the third factor is
A)
\[x+7\] done
clear
B)
\[x+9\] done
clear
C)
\[x+4\] done
clear
D)
\[~x+8\] done
clear
View Solution play_arrow
-
question_answer20)
If \[\mathbf{x}=\mathbf{2},\] \[\mathbf{y}=\mathbf{3}\] and \[\mathbf{z}=-\mathbf{5},\] then \[{{\mathbf{x}}^{\mathbf{3}}}\mathbf{+}{{\mathbf{y}}^{\mathbf{3}}}\mathbf{+}{{\mathbf{z}}^{\mathbf{3}}}\mathbf{=}\]
A)
90 done
clear
B)
-90 done
clear
C)
0 done
clear
D)
368 done
clear
View Solution play_arrow
-
question_answer21)
If \[\mathbf{3x}+\frac{1}{\mathbf{3x}}=\mathbf{3}\], then the value of \[27{{x}^{3}}+\frac{1}{27{{x}^{3}}}\] is
A)
-52 done
clear
B)
52 done
clear
C)
18 done
clear
D)
-18 done
clear
View Solution play_arrow
-
question_answer22)
If\[\left( x+\frac{1}{x} \right)=4,\]then\[\left( x-\frac{1}{x} \right)\]is
A)
\[2\sqrt{2}\] done
clear
B)
\[\sqrt{6}\] done
clear
C)
\[2\sqrt{3}\] done
clear
D)
\[3\sqrt{2}\] done
clear
View Solution play_arrow
-
question_answer23)
The factorization of \[\mathbf{4}{{\mathbf{a}}^{\mathbf{2}}}-\mathbf{4a}+\mathbf{1}\] is
A)
\[\left( 2a-1 \right)\left( 2a+1 \right)\] done
clear
B)
\[\left( 2a-1 \right)\left( 1-2a \right)\] done
clear
C)
\[\left( 2a+1 \right)\left( 2a+1 \right)\] done
clear
D)
\[\left( 2a- \right)\left( 2a-1 \right)\] done
clear
View Solution play_arrow
-
question_answer24)
The factors of the expression \[{{\mathbf{x}}^{\mathbf{2}}}\text{-}\frac{{{y}^{2}}}{100}\]is
A)
\[\left( x-\frac{y}{10} \right)\left( x-\frac{y}{10} \right)\] done
clear
B)
\[\left( x+\frac{y}{10} \right)\left( x+\frac{y}{10} \right)\] done
clear
C)
\[\left( y+\frac{x}{10} \right)\left( y+\frac{x}{10} \right)\] done
clear
D)
\[\left( x+\frac{y}{10} \right)\left( x-\frac{y}{10} \right)\] done
clear
View Solution play_arrow
-
question_answer25)
The value of \[{{\left( \mathbf{-a+b+c} \right)}^{\mathbf{2}}}\] is
A)
\[{{a}^{2}}+{{b}^{2}}+{{c}^{2}}-2ab+2bc-2ca\] done
clear
B)
\[~{{a}^{2}}-{{b}^{2}}-{{c}^{2}}-2ab+2bc-2ca\] done
clear
C)
\[{{x}^{2}}-{{y}^{2}}+{{z}^{2}}-2xy+3yz-4xz\] done
clear
D)
\[{{a}^{2}}+{{b}^{2}}-{{c}^{2}}-2ab-2bc-2ac\] done
clear
View Solution play_arrow
-
question_answer26)
If \[\mathbf{a}+\mathbf{b}+\mathbf{c}=\mathbf{12}\]and a2 + b2 + c2 = 50, then the value of \[\mathbf{ab}+\mathbf{be}+\mathbf{ca},\]is
A)
44 done
clear
B)
22 done
clear
C)
23 done
clear
D)
47 done
clear
View Solution play_arrow
-
question_answer27)
The factors of the expression \[{{\mathbf{x}}^{\mathbf{4}}}+{{\mathbf{x}}^{\mathbf{2}}}+\mathbf{1}\]is
A)
\[\left( {{x}^{2}}+1-x \right)\left( {{x}^{2}}-1+x \right)\] done
clear
B)
\[\left( {{x}^{2}}-1-x \right)\left( {{x}^{2}}-1-x \right)\] done
clear
C)
\[\left( {{x}^{2}}+1-x \right)\left( {{x}^{2}}-1-x \right)\] done
clear
D)
\[({{x}^{2}}+1-x)({{x}^{2}}+1+x)\] done
clear
View Solution play_arrow
-
question_answer28)
The product of \[\left( \mathbf{x-}\frac{\mathbf{1}}{\mathbf{x}} \right)\left( \mathbf{x+}\frac{\mathbf{1}}{\mathbf{x}} \right)\left( {{\mathbf{x}}^{\mathbf{2}}}\mathbf{+}\frac{\mathbf{1}}{{{\mathbf{x}}^{\mathbf{2}}}} \right)\left( {{\mathbf{x}}^{\mathbf{4}}}\mathbf{+}\frac{\mathbf{1}}{{{\mathbf{x}}^{\mathbf{4}}}} \right)\]is
A)
\[\left( {{x}^{8}}-\frac{1}{{{x}^{8}}} \right)\] done
clear
B)
\[\left( {{x}^{4}}-\frac{1}{{{x}^{4}}} \right)\] done
clear
C)
\[\left( {{x}^{2}}-\frac{1}{{{x}^{2}}} \right)\] done
clear
D)
\[\left( {{x}^{8}}+\frac{1}{{{x}^{8}}} \right)\] done
clear
View Solution play_arrow
-
question_answer29)
If \[\mathbf{x+}\frac{\mathbf{1}}{\mathbf{x}}\mathbf{=3}\], then the value of \[{{\mathbf{x}}^{\mathbf{4}}}+\frac{1}{{{\mathbf{x}}^{\mathbf{4}}}}\]is
A)
56 done
clear
B)
74 done
clear
C)
47 done
clear
D)
60 done
clear
View Solution play_arrow
-
question_answer30)
If \[{{\mathbf{x}}^{\mathbf{2}}}+\frac{1}{{{\mathbf{x}}^{\mathbf{2}}}}=\mathbf{123}.\]Then the value of \[{{\mathbf{x}}^{3}}-\frac{1}{{{\mathbf{x}}^{3}}}\] is
A)
1340 done
clear
B)
1364 done
clear
C)
1358 done
clear
D)
1360 done
clear
View Solution play_arrow
-
question_answer31)
The value of \[\frac{{{\left( {{a}^{2}}-{{b}^{2}} \right)}^{3}}{{\left( {{b}^{2}}-{{c}^{2}} \right)}^{3}}+{{\left( {{c}^{2}}-{{a}^{2}} \right)}^{3}}}{{{\left( a-b \right)}^{3}}+{{\left( b-c \right)}^{3}}+{{\left( c-a \right)}^{3}}}\]is
A)
\[3\left( a+b \right)\left( b+c \right)\left( c+a \right)\] done
clear
B)
\[3\left( a-b \right)\left( b-c \right)\left( c-a \right)\] done
clear
C)
\[(a-b)\left( b-c \right)\left( c-a \right)\] done
clear
D)
\[\left( a+b \right)\left( b+c \right)\left( c+a \right)\] done
clear
View Solution play_arrow
-
question_answer32)
If \[\mathbf{p=2-a,}\] then the value of \[{{\mathbf{a}}^{\mathbf{3}}}\mathbf{+6ap+}{{\mathbf{p}}^{\mathbf{3}}}\mathbf{-8}\] is
A)
1 done
clear
B)
0 done
clear
C)
3 done
clear
D)
-1 done
clear
View Solution play_arrow
-
question_answer33)
he factors of the expression \[\mathbf{4}{{\mathbf{x}}^{\mathbf{2}}}\mathbf{+4xy+}{{\mathbf{y}}^{\mathbf{2}}}\] is
A)
\[\left( 2x+y \right)\left( 2x+y \right)\] done
clear
B)
\[\left( 2x+y \right)\left( 2x-y \right)\] done
clear
C)
\[\left( 2x-y \right)(2x-y)\] done
clear
D)
\[\left( 2x+x \right)\left( 2y+x \right)\] done
clear
View Solution play_arrow
-
question_answer34)
When the polynomial \[\mathbf{f(x)=}{{\mathbf{x}}^{\mathbf{4}}}\mathbf{+3}{{\mathbf{x}}^{\mathbf{3}}}\mathbf{-2}{{\mathbf{x}}^{\mathbf{2}}}\mathbf{+x-1}\] is divided by \[\left( \mathbf{x-2} \right)\] what will be the remainder?
A)
17 done
clear
B)
33 done
clear
C)
23 done
clear
D)
29 done
clear
View Solution play_arrow
-
question_answer35)
If polynomials \[\mathbf{2}{{\mathbf{x}}^{\mathbf{3}}}\mathbf{+a}{{\mathbf{x}}^{\mathbf{2}}}\mathbf{+3x-5}\] and \[{{\mathbf{x}}^{\mathbf{3}}}\mathbf{+}{{\mathbf{x}}^{\mathbf{2}}}\mathbf{-2x+a}\] are divided by\[\left( \mathbf{x-2} \right)\], the same remainders are obtained. Find the value of a.
A)
-3 done
clear
B)
3 done
clear
C)
-4 done
clear
D)
-9 done
clear
View Solution play_arrow
-
question_answer36)
For what value of k, \[\mathbf{3}{{\mathbf{x}}^{\mathbf{4}}}\mathbf{+2}{{\mathbf{x}}^{\mathbf{3}}}\mathbf{+3k}{{\mathbf{x}}^{\mathbf{2}}}\mathbf{+2x+6}\] is exactly divisible by \[\mathbf{(x-2)?}\]
A)
1 done
clear
B)
2 done
clear
C)
-2 done
clear
D)
\[-\frac{8}{3}\] done
clear
View Solution play_arrow
-
question_answer37)
What is the LCM of \[{{\mathbf{x}}^{\mathbf{2}}}\mathbf{-1,}\]\[{{\mathbf{x}}^{\mathbf{2}}}\mathbf{-4x+3}\] and \[{{\mathbf{x}}^{\mathbf{2}}}\mathbf{+3x+2?}\]
A)
\[\left( x+3 \right)\left( x+1 \right)\] done
clear
B)
\[\left( {{x}^{2}}-1 \right)\left( x+2 \right)\left( x-3 \right)\] done
clear
C)
\[\left( x-1 \right)\left( x-2 \right)\left( x-3 \right)\] done
clear
D)
\[\left( {{x}^{2}}-1 \right)\left( x+2 \right)\left( x+3 \right)\] done
clear
View Solution play_arrow
-
question_answer38)
What is the HCF of \[{{\mathbf{x}}^{\mathbf{2}}}-\mathbf{5x}+\mathbf{6},\]\[{{\mathbf{x}}^{\mathbf{2}}}-\mathbf{7x}+\mathbf{12}\] and \[{{\mathbf{x}}^{\mathbf{2}}}+\mathbf{9x}+\mathbf{20}\]
A)
1 done
clear
B)
\[\left( x-3 \right)\] done
clear
C)
\[\left( 2x-5 \right)\] done
clear
D)
\[x-4\] done
clear
View Solution play_arrow
-
question_answer39)
If the LCM and HCF of two quadratic polynomials are \[{{\mathbf{x}}^{\mathbf{3}}}-\mathbf{7x}+\mathbf{6}\] and \[\left( \mathbf{x}-\mathbf{1} \right)\] respectively, find the polynomials.
A)
\[\left( {{x}^{2}}-3x+2 \right),\left( {{x}^{2}}+2x+3 \right)\] done
clear
B)
\[\left( {{x}^{2}}+3x-2 \right),\left( {{x}^{2}}-2x+3 \right)\] done
clear
C)
\[\left( {{x}^{2}}-3x+2 \right),\left( {{x}^{2}}+2x-3 \right)\] done
clear
D)
\[\left( {{x}^{2}}+3x+2 \right),\left( {{x}^{2}}+2x+3 \right)\] done
clear
View Solution play_arrow
-
question_answer40)
If HCF and LCM of two terms a and b are x and y respectively and \[\mathbf{a}+\mathbf{b}=\mathbf{x}+\mathbf{y},\] then \[{{\mathbf{x}}^{\mathbf{2}}}\mathbf{+}{{\mathbf{y}}^{\mathbf{2}}}\mathbf{=?}\]
A)
\[{{a}^{2}}-{{b}^{2}}\] done
clear
B)
\[2{{a}^{2}}+{{b}^{2}}\] done
clear
C)
\[{{a}^{2}}+{{b}^{2}}\] done
clear
D)
\[{{a}^{2}}+2{{b}^{2}}\] done
clear
View Solution play_arrow