10th Class Mathematics Polynomials Question Bank Case Based (MCQs) - Polynomials

  • question_answer
    The   zeroes   of   the   quadratic   polynomial \[4\sqrt{3}\,{{x}^{2}}+5x-2\sqrt{3}\] are:

    A) \[\frac{2}{\sqrt{3}}.\frac{\sqrt{3}}{4}\]

    B) \[-\frac{2}{\sqrt{3}}.\frac{\sqrt{3}}{4}\]

    C) \[\frac{2}{\sqrt{3}}.-\frac{\sqrt{3}}{4}\]

    D) \[-\frac{2}{\sqrt{3}}.-\frac{\sqrt{3}}{4}\]

    Correct Answer: B

    Solution :

    Given polynomial \[=4\sqrt{3}{{x}^{2}}+5x-2\sqrt{3}\]
    \[=4\sqrt{3}\,\,{{x}^{2}}+(8-3)x-2\sqrt{3}\]
    (by splitting the middle term)
    [TRICK
    Product \[4\sqrt{3}\times 2\sqrt{3}=8\times 3=24\]
                \[24=2\times 12=6\times 4=8\times 3\]
                \[\therefore \] We take 8 and 3 as a factors of 24.
                So, middle term     \[5=8-3\]]
                \[=4\sqrt{3}\,\,{{x}^{2}}+8x-3x-2\sqrt{3}\]
    \[=4\times (\sqrt{3}x+2)-\sqrt{3}(\sqrt{3}x+2)\]
    \[=(\sqrt{3}x+2)\,(4x-\sqrt{3})\]
    For the zeroes of the polynomial,
                \[(\sqrt{3}x+2)\,\,(4x-\sqrt{3})=0\]
    \[\Rightarrow \,\,\,\,\sqrt{3}x+2=0\]  or \[4x-\sqrt{3}=0\]
    \[\Rightarrow \,\,\,\,\,x=\frac{-2}{\sqrt{3}}\] or \[x=\frac{\sqrt{3}}{4}\,\,\,\Rightarrow \,\,x=\frac{-2}{\sqrt{3}},\,\frac{\sqrt{3}}{4}\]
    So, option [b] is correct


You need to login to perform this action.
You will be redirected in 3 sec spinner