A) \[\frac{2}{\sqrt{3}}.\frac{\sqrt{3}}{4}\]
B) \[-\frac{2}{\sqrt{3}}.\frac{\sqrt{3}}{4}\]
C) \[\frac{2}{\sqrt{3}}.-\frac{\sqrt{3}}{4}\]
D) \[-\frac{2}{\sqrt{3}}.-\frac{\sqrt{3}}{4}\]
Correct Answer: B
Solution :
Given polynomial \[=4\sqrt{3}{{x}^{2}}+5x-2\sqrt{3}\] |
\[=4\sqrt{3}\,\,{{x}^{2}}+(8-3)x-2\sqrt{3}\] |
(by splitting the middle term) |
[TRICK |
Product \[4\sqrt{3}\times 2\sqrt{3}=8\times 3=24\] |
\[24=2\times 12=6\times 4=8\times 3\] |
\[\therefore \] We take 8 and 3 as a factors of 24. |
So, middle term \[5=8-3\]] |
\[=4\sqrt{3}\,\,{{x}^{2}}+8x-3x-2\sqrt{3}\] |
\[=4\times (\sqrt{3}x+2)-\sqrt{3}(\sqrt{3}x+2)\] |
\[=(\sqrt{3}x+2)\,(4x-\sqrt{3})\] |
For the zeroes of the polynomial, |
\[(\sqrt{3}x+2)\,\,(4x-\sqrt{3})=0\] |
\[\Rightarrow \,\,\,\,\sqrt{3}x+2=0\] or \[4x-\sqrt{3}=0\] |
\[\Rightarrow \,\,\,\,\,x=\frac{-2}{\sqrt{3}}\] or \[x=\frac{\sqrt{3}}{4}\,\,\,\Rightarrow \,\,x=\frac{-2}{\sqrt{3}},\,\frac{\sqrt{3}}{4}\] |
So, option [b] is correct |
You need to login to perform this action.
You will be redirected in
3 sec