A) \[(5,11,13)\]
B) \[(9,15,18)\]
C) \[(17,24,25)\]
D) \[(20,21,29)\]
Correct Answer: D
Solution :
According of Pythagoras theorem, |
\[{{(\text{Longest side},\text{ i}.\text{e}.,\text{ hypotenuse)}}^{2}}\] |
\[={{(\text{one side i}\text{.e}\text{.},\text{ base)}}^{2}}+{{(\text{other side i}\text{.e}\text{.},\text{ height)}}^{2}}\]From option ; \[(5,11,13)\] |
Longest side = 13, one side = 5 and other side = 11 |
Now, \[{{(11)}^{2}}+{{(5)}^{2}}=121+25=146\] |
and \[{{(13)}^{2}}=169\] |
\[{{(13)}^{2}}\ne {{(11)}^{2}}+{{(5)}^{2}}\] |
\[(5,11,13)\] does not form a Pythagoras triplet. |
From option ; \[(9,15,18)\] |
longest side =18, one side =9 and other side =15 |
Now, \[{{(15)}^{2}}+{{(9)}^{2}}=225+81=306\] |
and \[{{(18)}^{2}}=324\] |
\[{{(18)}^{2}}\ne {{(15)}^{2}}+{{(9)}^{2}}\] |
\[\therefore \,\,(9,15,18)\]does not form a Pythagoras triplet. |
From option ; \[(17,24,25)\] |
longest side =25, one side =17 and other side =24 |
Now, \[{{(17)}^{2}}+{{(24)}^{2}}=289+576=865\] |
and \[{{(25)}^{2}}=625\] |
\[{{(25)}^{2}}={{(17)}^{2}}+{{(24)}^{2}}\] |
\[\therefore \,(17,24,15)\] does not form a Pythagoras triplet. |
From option ; \[(20,21,29)\] |
longest side =29, one side =21 and other side =20 |
Now, \[{{(20)}^{2}}+{{(21)}^{2}}=400+441=841\] and \[{{(29)}^{2}}=841\] |
\[{{(29)}^{2}}={{(20)}^{2}}+{{(21)}^{2}}\] |
\[\therefore \,(20,21,29)\] forms a Pythagoras triplet. |
So, option [d] is correct. |
You need to login to perform this action.
You will be redirected in
3 sec