JEE Main & Advanced Mathematics Functions Question Bank Continuity

  • question_answer
    If \[f(x)=\left\{ \begin{align}   & \,\,\,\,\,\,\,{{e}^{x}};\,\,\,\,x\le 0 \\  & |1-x|;\,\,x>0 \\ \end{align} \right.\], then [Roorkee 1995]

    A)            \[f(x)\] is differentiable at \[x=0\]

    B)            \[f(x)\] is continuous at \[x=0\]

    C)            \[f(x)\] is differentiable at \[x=1\]

    D)                 \[f(x)\] is continuous at \[x=1\]

    Correct Answer: B

    Solution :

     \[f(x)=\left\{ \begin{align}   & {{e}^{x}}\,\,;\,\,\,x\le 0 \\  & 1-x;\,\,0<x\le 1 \\  & x-1\,;\,\,x>1 \\ \end{align} \right.\]                    \[Rf'(0)=\underset{h\to 0}{\mathop{\lim }}\,\frac{f(0+h)-f(0)}{h}=\underset{h\to 0}{\mathop{\lim }}\,\frac{1-h-1}{h}=-1\]                    \[Lf'(0)=\underset{h\to 0}{\mathop{\lim }}\,\frac{f(0-h)-f(0)}{-h}=\underset{h\to 0}{\mathop{\lim }}\,\frac{{{e}^{-h}}-1}{-h}=1\]                    So, it is not differentiable at \[x=0\].                    Similarly, it is not differentiable at \[x=1\].                    But it is continous at \[x=0\], 1.


You need to login to perform this action.
You will be redirected in 3 sec spinner