11th Class Mathematics Conic Sections Question Bank Critical Thinking

  • question_answer
    The locus of the poles of normal chords of an ellipse is given by  [UPSEAT 2001]

    A)            \[\frac{{{a}^{6}}}{{{x}^{2}}}+\frac{{{b}^{6}}}{{{y}^{2}}}={{({{a}^{2}}-{{b}^{2}})}^{2}}\]            

    B)            \[\frac{{{a}^{3}}}{{{x}^{2}}}+\frac{{{b}^{3}}}{{{y}^{2}}}={{({{a}^{2}}-{{b}^{2}})}^{2}}\]

    C)            \[\frac{{{a}^{6}}}{{{x}^{2}}}+\frac{{{b}^{6}}}{{{y}^{2}}}={{({{a}^{2}}+{{b}^{2}})}^{2}}\]           

    D)            \[\frac{{{a}^{3}}}{{{x}^{2}}}+\frac{{{b}^{3}}}{{{y}^{2}}}={{({{a}^{2}}+{{b}^{2}})}^{2}}\]

    Correct Answer: A

    Solution :

               Let the equation of the ellipse is \[\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1\]             .....(i)                   Let \[(h,\,k)\] be the poles.            Now polar of \[(h,\,k)\] w.r.t. the ellipse is given by \[\frac{xh}{{{a}^{2}}}+\frac{yk}{{{b}^{2}}}=1\]                                                                 .....(ii)            If it is a normal to the ellipse then it must be identical with \[ax\,\sec \theta -\,by\,\text{cosec}\,\theta ={{a}^{\text{2}}}-{{b}^{2}}\]                       .....(iii)            Hence comparing (ii) and (iii), we get            \[\frac{(h/{{a}^{2}})}{a\,\sec \theta }=\frac{(k/{{b}^{2}})}{-b\,\cos ec\theta }=\frac{1}{({{a}^{2}}-{{b}^{2}})}\]            Þ \[\cos \theta =\frac{{{a}^{3}}}{h\,({{a}^{2}}-{{b}^{2}})}\] and \[\sin \theta =\frac{{{b}^{3}}}{k({{a}^{2}}-{{b}^{2}})}\]            Squaring and adding we get, \[1=\frac{1}{{{({{a}^{2}}-{{b}^{2}})}^{2}}}\left( \frac{{{a}^{6}}}{{{h}^{2}}}+\frac{{{b}^{6}}}{{{k}^{2}}} \right)\,\]                    \ Required locus of \[(h,\,k)\] is \[\frac{{{a}^{6}}}{{{x}^{2}}}+\frac{{{b}^{6}}}{{{y}^{2}}}={{({{a}^{2}}-{{b}^{2}})}^{2}}.\].


You need to login to perform this action.
You will be redirected in 3 sec spinner