JEE Main & Advanced Mathematics Functions Question Bank Differentiability

  • question_answer
    At the point \[x=1\], the given function \[f(x)=\left\{ \begin{align}   & {{x}^{3}}-1;\,\,1<x<\infty  \\  & x-1;\,\,-\infty <x\le 1 \\ \end{align} \right.\] is [Roorkee 1993]

    A)            Continuous and differentiable

    B)            Continuous and not differentiable

    C)            Discontinuous and differentiable

    D)            Discontinuous and not differentiable

    Correct Answer: B

    Solution :

               We have \[Rf'(1)=\underset{h\to 0}{\mathop{\lim }}\,\,\,\frac{f(1+h)-f(1)}{h}\]                                             \[=\underset{h\to 0}{\mathop{\lim }}\,\,\,\frac{\left\{ {{(1+h)}^{3}}-1 \right\}-0}{h}=3\]            \[Lf'(1)=\underset{h\to 0}{\mathop{\lim }}\,\,\,\frac{f(1-h)-f(1)}{-h}\]\[=\underset{h\to 0}{\mathop{\lim }}\,\,\,\frac{\left\{ (1-h)-1 \right\}-0}{-h}=1\]            \[\therefore \,\,\,Rf'(1)\ne Lf'(1)\]\[\Rightarrow \,\,f(x)\] is not differentiable at \[x=1.\]            Now,  \[f(1+0)=\underset{h\to 0}{\mathop{\lim }}\,\,f(1+h)=0\]            and \[f(1-0)=\underset{h\to 0}{\mathop{\lim }}\,\,f(1-h)=0\]            \[\therefore \,\,\,f(1+0)=f(1-0)=f(0)\]\[\Rightarrow \,\,f(x)\] is continuous at \[x=1.\]Hence at \[x=1,\,\,\,f(x)\]is continuous and not differentiable.


You need to login to perform this action.
You will be redirected in 3 sec spinner