JEE Main & Advanced Mathematics Functions Question Bank Differentiability

  • question_answer
    The function \[y={{e}^{-|x|}}\] is [AMU 2000]

    A)            Continuous and differentiable at \[x=0\]

    B)            Neither continuous nor differentiable at \[x=0\]

    C)            Continuous but not differentiable at \[x=0\]

    D)            Not continuous but differentiable at \[x=0\]

    Correct Answer: C

    Solution :

               We have, \[f(x)=\left\{ \begin{matrix}    {{e}^{-x}}, & x\ge 0  \\    {{e}^{x}}, & x<0  \\ \end{matrix} \right.\]            Clearly, \[f(x)\] is continuous and differentiable for all non zero x.            Now \[\underset{x\to 0-}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,{{e}^{x}}=1\],\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x){{e}^{-x}}=1\]            Also, \[f(0)={{e}^{0}}=1\]. So, \[f(x)\] is continuous for all x.            (LHD at \[x=0)\] \[={{\left( \frac{d}{dx}({{e}^{x}}) \right)}_{x=0}}=1\]            (RHD at \[x=0)\] \[f(x)\]            So, \[\underset{x\to 7}{\mathop{\lim }}\,\frac{2-\sqrt{x-3}}{{{x}^{2}}-49}\] is not differentiable at \[L\,{f}'\,(1)=\underset{h\to 0}{\mathop{\lim }}\,\,\,\frac{f(1-h)-f(1)}{-h}\].            Hence \[f(x)={{e}^{-\,|\,x\,|}}\] is everywhere continuous but not differentiable at \[x=0\].


You need to login to perform this action.
You will be redirected in 3 sec spinner