JEE Main & Advanced Mathematics Functions Question Bank Differentiability

  • question_answer
    Let \[f(x)=\left\{ \begin{matrix}    0, & x<0  \\    {{x}^{2}}, & x\ge 0  \\ \end{matrix} \right.\] , then for all values of \[x\] [IIT 1984; MP PET 2002]

    A)             f is continuous but not differentiable

    B)             f  is differentiable but not continuous

    C)            \[{f}'\] is continuous but not differentiable

    D)            \[{f}'\] is continuous and differentiable

    Correct Answer: C

    Solution :

               \[f(x)=\left\{ \begin{matrix}    \ \,0, & x<0  \\    {{x}^{2}}, & x\ge 0  \\ \end{matrix} \right.\]; \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,f(0-h)=0\]            and \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,f(0+h)=\underset{h\to 0}{\mathop{\lim }}\,{{(0+h)}^{2}}=0\]            Þ \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=f(0)\]            Hence \[f(x)\] is continuous function at \[x=0\].            \[L\,{f}'(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\frac{f(x)-f(0)}{x-0}=\underset{h\to 0}{\mathop{\lim }}\,\frac{f(0-h)-0}{-h}=\underset{h\to 0}{\mathop{\lim }}\,\frac{0-0}{-h}=0\]            \[R{f}'(x)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\frac{f(x)-f(0)}{x-0}\]                     \[=\underset{h\to 0}{\mathop{\lim }}\,\frac{f(0+h)-f(0)}{h}=\underset{h\to 0}{\mathop{\lim }}\,\frac{{{(0+h)}^{2}}-0}{h}=0\]            Þ \[L{f}'(x)=R{f}'(x)\]            Hence \[f(x)\] is differentiable at \[x=0\].            Now \[{f}'(x)=\left\{ \begin{matrix}    0\,\,\,\,, & x<0  \\    2x\,\,, & x\ge 0  \\ \end{matrix} \right.\]; \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{f}'(x)=\underset{h\to 0}{\mathop{\lim }}\,{f}'(0-h)=0\]            and \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{f}'(x)=\underset{h\to 0}{\mathop{\lim }}\,{f}'(0+h)=\underset{h\to 0}{\mathop{\lim }}\,2(0+h)=0\]            Þ \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{f}'(x)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{f}'(x)=0\]            Hence \[{f}'(x)\] is continuous function at \[x=0\].            Now \[L\,{f}''(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\frac{f(x)-f(0)}{x-0}\]\[=\underset{h\to 0}{\mathop{\lim }}\,\frac{f(0-h)-f(0)}{-h}\]                           \[=\underset{h\to 0}{\mathop{\lim }}\,\frac{0-0}{-h}=0\]            \[R\,{f}''(x)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\frac{f(x)-f(0)}{x-0}\]\[=\underset{h\to 0}{\mathop{\lim }}\,\frac{f(0+h)-f(0)}{h}\]            \[=\underset{h\to 0}{\mathop{\lim }}\,\frac{2(0+h)-0}{h}\]\[=\underset{h\to 0}{\mathop{\lim }}\,\frac{2h}{h}=2\]Þ \[L{f}''(x)\ne R{f}''(x)\]            Hence \[{f}'(x)\] is not differentiable at \[x=0\].


You need to login to perform this action.
You will be redirected in 3 sec spinner