JEE Main & Advanced Mathematics Functions Question Bank Differentiability

  • question_answer
    If \[f(x)=\left\{ \begin{align}   & x\frac{{{e}^{(1/x)}}-{{e}^{(-1/x)}}}{{{e}^{(1/x)}}+{{e}^{(-1/x)}}},\,x\ne 0 \\  & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0,\,x=0 \\ \end{align} \right.\] then which of the following is true                        [Kurukshetra CEE 1998]

    A)            f is continuous and differentiable at every point

    B)            f is continuous at every point but is not differentiable

    C)            f is differentiable at every point

    D)            f is differentiable only at the origin

    Correct Answer: B

    Solution :

               \[f(0+0)=\underset{h\to 0}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,f(0+h)\]                    \[=\underset{h\to 0}{\mathop{\lim }}\,\,\,(0+h)\,\frac{{{e}^{1/0+h}}-{{e}^{-1/0+h}}}{{{e}^{1/0+h}}+{{e}^{-1/0+h}}}\]\[=\underset{h\to 0}{\mathop{\lim }}\,\,\,h\,\,\frac{{{e}^{1/h}}-{{e}^{-1/h}}}{{{e}^{1/h}}+{{e}^{-1/h}}}\]=0                    and \[f(0-0)=\underset{h\to 0}{\mathop{\lim }}\,f(0-h)=\underset{h\to 0}{\mathop{\lim }}\,\,\,-h\,\,\frac{{{e}^{-1/h}}-{{e}^{1/h}}}{{{e}^{-1/h}}+{{e}^{1/h}}}=0\]                    and \[f(0)=0\]; \[\therefore \,\,\,f(0+0)=f(0-0)=f(0)\]                    Hence f is continuous at \[x=0.\]                    At remaining points \[f(x)\] is obviously continuous.                    Thus it is everywhere continuous.                    Again, \[L\,{f}'(0)=\underset{h\to 0}{\mathop{\lim }}\,\,\,\frac{f(0-h)-f(0)}{-h}\]                                          \[=\underset{h\to 0}{\mathop{\lim }}\,\,\frac{h\,.\,\frac{{{e}^{-1/h}}-{{e}^{1/h}}}{{{e}^{-1/h}}+{{e}^{1/h}}}-0}{-h}=-1\]                    \[R\,{f}'(0)=\underset{h\to 0}{\mathop{\lim }}\,\,\frac{f\,(0+h)-f\,(0)}{h}\]\[=\underset{h\to 0}{\mathop{\lim }}\,\,\,\frac{h\,\,\frac{{{e}^{1/h}}-{{e}^{-1/h}}}{{{e}^{1/h}}+{{e}^{-1/h}}}}{h}=1\]                    \[\because \,\,L\,\,{f}'(0)\ne R\,{f}'(0)\]                    \[\therefore \,\,f\] is not differentiable at \[x=0\].


You need to login to perform this action.
You will be redirected in 3 sec spinner