JEE Main & Advanced Mathematics Functions Question Bank Differentiability

  • question_answer
    The set of all those points, where the function \[f(x)=\frac{x}{1+|x|}\]is differentiable, is

    A)            \[(-\infty ,\infty )\]

    B)            \[[0,\infty ]\]

    C)            \[(-\infty ,\,0)\cup (0,\infty )\]

    D)            \[(0,\infty )\]

    Correct Answer: A

    Solution :

               Let \[h(x)=x,x\in (-\infty ,\infty )\]; \[g(x)=1+|x|,\,\,x\in (-\infty ,\infty )\]                    Here h is differentiable in \[(-\infty ,\infty )\] but \[|x|\] is not differentiable at \[x=0\].                    Therefore g is differentiable in \[(-\infty ,0)\cup (0,\infty )\] and \[g(x)\ne 0,x\in \] \[(-\infty ,\infty )\], therefore \[f(x)=\frac{h(x)}{g(x)}=\frac{x}{1+|x|}\]                    It is differentiable in \[(-\infty ,0)\cup (0,\infty )\] for \[x=0\]                    \[\underset{h\to 0}{\mathop{\lim }}\,\frac{f(h)-f(0)}{h-0}=\underset{h\to 0}{\mathop{\lim }}\,\frac{\frac{h}{1+|h|}-0}{h}=\underset{h\to 0}{\mathop{\lim }}\,\frac{1}{1+|h|}=1\]                    Therefore f is differentiable at \[x=0\], so f is differentiable in \[(-\infty ,\infty )\].


You need to login to perform this action.
You will be redirected in 3 sec spinner