JEE Main & Advanced Mathematics Functions Question Bank Differentiability

  • question_answer
    Consider \[f(x)=\left\{ \begin{align}   & \frac{{{x}^{2}}}{|x|},\,x\ne 0 \\  & \,\,\,\,\,\,\,0,\,x=0 \\ \end{align} \right.\] [EAMCET 1994]

    A)            \[f(x)\]is discontinuous everywhere

    B)            \[f(x)\]is continuous everywhere

    C)            \[f'(x)\]exists in \[(-1,1)\]

    D)            \[f'(x)\]exists in \[(-2,2)\]

    Correct Answer: B

    Solution :

               We have \[f(x)=\left\{ \begin{array}{*{35}{r}}    \frac{{{x}^{2}}}{|x|}, & x\ne 0  \\    0, & x=0  \\ \end{array}=\left\{ \begin{array}{*{35}{r}}    \frac{{{x}^{2}}}{x}=x, & x>0  \\    0, & x=0  \\    \frac{{{x}^{2}}}{-x}=-x, & x<0  \\ \end{array} \right. \right.\]            We have \[\underset{x\to 0-}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,\,-x=0,\,\,\underset{x\to 0+}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,x=0\] and \[f(0)=0.\]            So \[f(x)\] is continuous at \[x=0.\]            Also \[f(x)\] is continuous for all other values of x.            Hence, \[f(x)\] is continuous everywhere. Clearly, \[Lf'(0)=-1\] and \[Rf'(0)=1.\] therefore \[f(x)\] is not differentiable at \[x=0.\]


You need to login to perform this action.
You will be redirected in 3 sec spinner