JEE Main & Advanced Mathematics Determinants & Matrices Question Bank Expansion of determinants, Solution of equation in the form of determinants and properties of determinants

  • question_answer
    If \[\omega \]is a cube root of unity, then \[\left| \,\begin{matrix}    x+1 & \omega  & {{\omega }^{2}}  \\    \omega  & x+{{\omega }^{2}} & 1  \\    {{\omega }^{2}} & 1 & x+\omega   \\ \end{matrix}\, \right|=\] [MNR 1990; MP PET 1999]

    A) \[{{x}^{3}}+1\]

    B) \[{{x}^{3}}+\omega \]

    C) \[{{x}^{3}}+{{\omega }^{2}}\]

    D) \[{{x}^{3}}\]

    Correct Answer: D

    Solution :

      \[\Delta =\left| \,\begin{matrix}    x+1 & \omega  & {{\omega }^{2}}  \\    \omega  & x+{{\omega }^{2}} & 1  \\    {{\omega }^{2}} & 1 & x+\omega   \\ \end{matrix}\, \right|\]    =\[\left| \,\begin{matrix}    x+1+\omega +{{\omega }^{2}} & \omega  & {{\omega }^{2}}  \\    x+1+\omega +{{\omega }^{2}} & x+{{\omega }^{2}} & 1  \\    x+1+\omega +{{\omega }^{2}} & 1 & x+\omega   \\ \end{matrix}\, \right|\],\[({{C}_{1}}\to {{C}_{1}}+{{C}_{2}}+{{C}_{3}})\] = \[x\,\left| \,\begin{matrix}    1 & \omega  & {{\omega }^{2}}  \\    1 & x+{{\omega }^{2}} & 1  \\    1 & 1 & x+\omega   \\ \end{matrix}\, \right|\]        \[\left| \,\begin{matrix}    1 & a & {{a}^{2}}  \\    1 & b & {{b}^{2}}  \\    1 & c & {{c}^{2}}  \\ \end{matrix}\, \right|\ne 0\] = \[x\,[1\{(x+{{\omega }^{2}})\,(x+\omega )-1\}+\omega \{1-(x+\omega )\}\] \[+{{\omega }^{2}}\{1-(x+{{\omega }^{2}})\}]\] = \[x({{x}^{2}}+\omega x+{{\omega }^{2}}x+{{\omega }^{3}}-1+\omega -\omega x-{{\omega }^{2}}\]\[+{{\omega }^{2}}-{{\omega }^{2}}x-{{\omega }^{4}})\] = \[{{x}^{3}}\] ,      \[(\because \,\,{{\omega }^{3}}=1)\].


You need to login to perform this action.
You will be redirected in 3 sec spinner