Railways Technical Ability Fluid Mechanics and Machinery Question Bank Fluid Mechanics

  • question_answer How the Von-Karman momentum integral equation expressed is (\[\theta \] is momentum thickness)? 

    A) \[\frac{{{\tau }_{0}}}{\frac{1}{2}\,\rho \,U_{\infty }^{2}}=\frac{\partial \theta }{\partial x}\]      

    B)   \[\frac{{{\tau }_{0}}}{2\,\rho \,U_{\infty }^{2}}=\frac{\partial \theta }{\partial x}\]

    C) \[\frac{{{\tau }_{0}}}{\rho \,U_{\infty }^{2}}=\frac{\partial \theta }{\partial x}\]            

    D) \[\frac{{{\tau }_{0}}}{\frac{1}{3}\,\rho \,U_{\infty }^{2}}=\frac{\partial \theta }{\partial x}\]

    Correct Answer: C

You need to login to perform this action.
You will be redirected in 3 sec spinner