JEE Main & Advanced Mathematics Definite Integration Question Bank Fundamental definite integration, Definite integration by substitution

  • question_answer
    \[\int_{0}^{\pi /2}{\frac{dx}{2+\cos x}}=\]                                             [BIT Ranchi 1992]

    A)                 \[\frac{1}{\sqrt{3}}{{\tan }^{-1}}\left( \frac{1}{\sqrt{3}} \right)\]               

    B)                 \[\sqrt{3}{{\tan }^{-1}}\left( \sqrt{3} \right)\]

    C)                 \[\frac{2}{\sqrt{3}}{{\tan }^{-1}}\left( \frac{1}{\sqrt{3}} \right)\]               

    D)                 \[2\sqrt{3}{{\tan }^{-1}}\left( \sqrt{3} \right)\]

    Correct Answer: C

    Solution :

               \[I=\int_{0}^{\pi /2}{\frac{dx}{2+\cos x}}\]                       \[=\int_{0}^{\pi /2}{\frac{dx}{2{{\sin }^{2}}\frac{x}{2}+2{{\cos }^{2}}\frac{x}{2}+{{\cos }^{2}}\frac{x}{2}-{{\sin }^{2}}\frac{x}{2}}}\]                       \[=\int_{0}^{\pi /2}{\frac{dx}{{{\sin }^{2}}\frac{x}{2}+3{{\cos }^{2}}\frac{x}{2}}}=\int_{0}^{\pi /2}{\frac{{{\sec }^{2}}\frac{x}{2}}{3+{{\tan }^{2}}\frac{x}{2}}dx}\]                    Put \[t=\tan \frac{x}{2}\Rightarrow dt=\frac{1}{2}{{\sec }^{2}}\frac{x}{2}dx\], then                                 \[I=2\int_{0}^{1}{\frac{dt}{3+{{t}^{2}}}=\frac{2}{\sqrt{3}}{{\tan }^{-1}}\left( \frac{1}{\sqrt{3}} \right)}\].


You need to login to perform this action.
You will be redirected in 3 sec spinner