JEE Main & Advanced Mathematics Definite Integration Question Bank Fundamental definite integration, Definite integration by substitution

  • question_answer
    The value of \[\int_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}\,dt+\int_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}\,dt}}\] is [MP PET 2001; Orissa JEE 2005]

    A)                 \[\frac{\pi }{2}\]              

    B)                 1

    C)                 \[\frac{\pi }{4}\]              

    D)                 None of these

    Correct Answer: C

    Solution :

               We have \[I=\int_{0}^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}\,dt+\int_{0}^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}}\,dt}\]            Putting \[t={{\sin }^{2}}u\]in the first integral and \[t={{\cos }^{2}}v\]in the second integral, we have                    \[I=\int_{0}^{x}{u\sin \,2u\,du\,-\int_{\pi /2}^{x}{v\sin 2v\,dv}}\]                              \[=\int_{0}^{\pi /2}{u\sin 2udu+\int_{\pi /2}^{x}{u\sin 2u\,du-\int_{\pi /2}^{x}{v\sin 2v\,dv}}}\]                    \[I=\int_{0}^{\pi /2}{u\sin 2udu=\left( \frac{-u\cos 2u}{2} \right)}_{0}^{\pi /2}+\frac{1}{2}\int_{0}^{\pi /2}{\cos 2u\,du}\]                                   \[=\left( \frac{-u\cos 2u}{2} \right)_{0}^{\pi /2}+\frac{1}{4}(\sin 2u)_{0}^{\pi /2}=\frac{\pi }{4}\].


You need to login to perform this action.
You will be redirected in 3 sec spinner