JEE Main & Advanced Mathematics Definite Integration Question Bank Fundamental definite integration, Definite integration by substitution

  • question_answer
    \[\int_{\,8}^{\,15}{\frac{dx}{(x-3)\sqrt{x+1}}=}\]                                              [UPSEAT 2003]

    A)                 \[\frac{1}{2}\log \frac{5}{3}\]     

    B)                 \[\frac{1}{3}\log \frac{5}{3}\]

    C)                 \[\frac{1}{2}\log \frac{3}{5}\]     

    D)                 \[\frac{1}{5}\log \frac{3}{5}\]

    Correct Answer: A

    Solution :

               \[I=\int_{8}^{15}{\frac{dx}{(x-3)\sqrt{x+1}}}\]            Put \[x={{\tan }^{2}}\theta \Rightarrow \theta ={{\tan }^{-1}}\sqrt{x}\]             \[dx=2\tan \theta {{\sec }^{2}}\theta \,d\theta \]            \[\therefore \]\[I=\int_{{{\tan }^{-1}}\sqrt{8}}^{{{\tan }^{-1}}\sqrt{15}}{\frac{2\tan \theta {{\sec }^{2}}\theta \,}{({{\tan }^{2}}\theta -3)\sqrt{{{\tan }^{2}}\theta +1}}d\theta }\]              \[=\int_{{{\tan }^{-1}}\sqrt{8}}^{{{\tan }^{-1}}\sqrt{15}}{\frac{2\tan \theta {{\sec }^{2}}\theta \,}{({{\sec }^{2}}\theta -4)\sec \theta }d\theta }\]              \[=\int_{{{\tan }^{-1}}\sqrt{8}}^{{{\tan }^{-1}}\sqrt{15}}{\frac{2\tan \theta \sec \theta }{({{\sec }^{2}}\theta -4)}\,d\theta }\]                         \[=\int_{{{\tan }^{-1}}\sqrt{8}}^{{{\tan }^{-1}}\sqrt{15}}{\frac{2\tan \theta \sec \theta }{(\sec \theta -2)(\sec \theta +2)}\,d\theta }\]                         \[=\left[ \frac{1}{2}\log \frac{(\sec \theta -2)}{(\sec \theta +2)} \right]_{{{\tan }^{-1}}\sqrt{8}}^{{{\tan }^{-1}}\sqrt{15}}\]                                       \[=\frac{1}{2}\left[ \log \frac{2}{6}-\log \frac{1}{5} \right]=\frac{1}{2}\log \frac{5}{3}\].


You need to login to perform this action.
You will be redirected in 3 sec spinner