JEE Main & Advanced Mathematics Trigonometric Equations Question Bank Height and Distance

  • question_answer
    The shadow of a tower is found to be 60 metre shorter when the sun?s altitude changes from \[{{30}^{o}}\]to\[{{60}^{o}}\]. The height of the tower from the ground is approximately equal to  [Kerala (Engg.) 2005]

    A) 62m

    B) 301m

    C) 101m

    D) 75m

    E) 52m

    Correct Answer: E

    Solution :

    \[\tan {{30}^{o}}=\frac{h}{x+60}\], \[\frac{1}{\sqrt{3}}=\frac{h}{x+60}\] \[x+60=\sqrt{3}h\], \[x=\sqrt{3}h-60\] \[\tan {{60}^{o}}=\frac{h}{x}\], \[x=\frac{h}{\sqrt{3}}\] Þ \[\sqrt{3}h-60=\frac{h}{\sqrt{3}}\]Þ \[3h-60\sqrt{3}=h\] Þ \[h=\frac{60\sqrt{3}}{2}=30\sqrt{3}\] \[=51.96\approx 52m\].

You need to login to perform this action.
You will be redirected in 3 sec spinner