-
question_answer1)
\[\int_{{}}^{{}}{\frac{dx}{\cos (x-a)\cos (x-b)}=}\]
A)
\[\text{cosec}\,\,(a-b)\log \frac{\sin (x-a)}{\sin (x-b)}+c\] done
clear
B)
\[\text{cosec}(a-b)\log \frac{\cos (x-a)}{\cos (x-b)}+c\] done
clear
C)
\[\text{cosec}(a-b)\log \frac{\sin (x-b)}{\sin (x-a)}+c\] done
clear
D)
\[\text{cosec}(a-b)\log \frac{\cos (x-b)}{\cos (x-a)}+c\] done
clear
View Solution play_arrow
-
question_answer2)
\[\int_{{}}^{{}}{\frac{dx}{\sqrt{x+a}+\sqrt{x+b}}}=\] [AISSE 1989]
A)
\[\frac{2}{3(b-a)}[{{(x+a)}^{3/2}}-{{(x+b)}^{3/2}}]+c\] done
clear
B)
\[\frac{2}{3(a-b)}[{{(x+a)}^{3/2}}-{{(x+b)}^{3/2}}]+c\] done
clear
C)
\[\frac{2}{3(a-b)}[{{(x+a)}^{3/2}}+{{(x+b)}^{3/2}}]+c\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer3)
\[\int_{{}}^{{}}{\frac{3\cos x+3\sin x}{4\sin x+5\cos x}\ dx=}\] [EAMCET 1991]
A)
\[\frac{27}{41}x-\frac{3}{41}\log (4\sin x+5\cos x)\] done
clear
B)
\[\frac{27}{41}x+\frac{3}{41}\log (4\sin x+5\cos x)\] done
clear
C)
\[\frac{27}{41}x-\frac{3}{41}\log (4\sin x-5\cos x)\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer4)
If \[\int_{{}}^{{}}{(\sin 2x+\cos 2x)\ dx=\frac{1}{\sqrt{2}}\sin (2x-c)+a}\], then the value of a and c is [Roorkee 1978]
A)
\[c=\pi /4\] and \[a=k\] (an arbitrary constant) done
clear
B)
\[c=-\pi /4\] and \[a=\pi /2\] done
clear
C)
\[c=\pi /2\] and a is an arbitrary constant done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer5)
\[\int_{{}}^{{}}{\frac{{{x}^{3}}-x-2}{(1-{{x}^{2}})}\ dx=}\] [AI CBSE 1985]
A)
\[\log \left( \frac{x+1}{x-1} \right)-\frac{{{x}^{2}}}{2}+c\] done
clear
B)
\[\log \left( \frac{x-1}{x+1} \right)+\frac{{{x}^{2}}}{2}+c\] done
clear
C)
\[\log \left( \frac{x+1}{x-1} \right)+\frac{{{x}^{2}}}{2}+c\] done
clear
D)
\[\log \left( \frac{x-1}{x+1} \right)-\frac{{{x}^{2}}}{2}+c\] done
clear
View Solution play_arrow
-
question_answer6)
\[\int_{{}}^{{}}{\frac{{{\sin }^{8}}x-{{\cos }^{8}}x}{1-2{{\sin }^{2}}x{{\cos }^{2}}x}\ dx=}\] [IIT 1986]
A)
\[\sin 2x+c\] done
clear
B)
\[-\frac{1}{2}\sin 2x+c\] done
clear
C)
\[\frac{1}{2}\sin 2x+c\] done
clear
D)
\[-\sin 2x+c\] done
clear
View Solution play_arrow
-
question_answer7)
\[\int_{{}}^{{}}{\frac{{{x}^{2}}dx}{{{(a+bx)}^{2}}}}=\] [IIT 1979]
A)
\[\frac{1}{{{b}^{2}}}\left[ x+\frac{2a}{b}\log (a+bx)-\frac{{{a}^{2}}}{b}\frac{1}{a+bx} \right]\] done
clear
B)
\[\frac{1}{{{b}^{2}}}\left[ x-\frac{2a}{b}\log (a+bx)+\frac{{{a}^{2}}}{b}\frac{1}{a+bx} \right]\] done
clear
C)
\[\frac{1}{{{b}^{2}}}\left[ x+\frac{2a}{b}\log (a+bx)+\frac{{{a}^{2}}}{b}\frac{1}{a+bx} \right]\] done
clear
D)
\[\frac{1}{{{b}^{2}}}\left[ x+\frac{a}{b}-\frac{2a}{b}\log (a+bx)-\frac{{{a}^{2}}}{b}\frac{1}{a+bx} \right]\] done
clear
View Solution play_arrow
-
question_answer8)
\[\int_{{}}^{{}}{\frac{dx}{(1+{{x}^{2}})\sqrt{{{p}^{2}}+{{q}^{2}}{{({{\tan }^{-1}}x)}^{2}}}}}=\]
A)
\[\frac{1}{q}\log [q{{\tan }^{-1}}x+\sqrt{{{p}^{2}}+{{q}^{2}}{{({{\tan }^{-1}}x)}^{2}}}]+c\] done
clear
B)
\[\log [q{{\tan }^{-1}}x+\sqrt{{{p}^{2}}+{{q}^{2}}{{({{\tan }^{-1}}x)}^{2}}}]+c\] done
clear
C)
\[\frac{2}{3q}{{({{p}^{2}}+{{q}^{2}}{{\tan }^{-1}}x)}^{3/2}}+c\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer9)
\[\int_{{}}^{{}}{\frac{{{x}^{5}}}{\sqrt{1+{{x}^{3}}}}dx=}\] [IIT 1985]
A)
\[\frac{2}{9}{{(1+{{x}^{3}})}^{3/2}}+c\] done
clear
B)
\[\frac{2}{9}{{(1+{{x}^{3}})}^{3/2}}+\frac{2}{3}{{(1+{{x}^{3}})}^{1/2}}+c\] done
clear
C)
\[\frac{2}{9}{{(1+{{x}^{3}})}^{3/2}}-\frac{2}{3}{{(1+{{x}^{3}})}^{1/2}}+c\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer10)
\[\int{\frac{dx}{\sin x-\cos x+\sqrt{2}}}\] equals [MP PET 2002]
A)
\[-\frac{1}{\sqrt{2}}\tan \left( \frac{x}{2}+\frac{\pi }{8} \right)+c\] done
clear
B)
\[\frac{1}{\sqrt{2}}\tan \left( \frac{x}{2}+\frac{\pi }{8} \right)+c\] done
clear
C)
\[\frac{1}{\sqrt{2}}\cot \left( \frac{x}{2}+\frac{\pi }{8} \right)+c\] done
clear
D)
\[-\frac{1}{\sqrt{2}}\cot \left( \frac{x}{2}+\frac{\pi }{8} \right)+c\] done
clear
View Solution play_arrow
-
question_answer11)
\[\int_{{}}^{{}}{\frac{a\ dx}{b+c{{e}^{x}}}}=\] [MP PET 1988; BIT Ranchi 1979]
A)
\[\frac{a}{b}\log \left( \frac{{{e}^{x}}}{b+c{{e}^{x}}} \right)+c\] done
clear
B)
\[\frac{a}{b}\log \left( \frac{b+c{{e}^{x}}}{{{e}^{x}}} \right)+c\] done
clear
C)
\[\frac{b}{a}\log \left( \frac{{{e}^{x}}}{b+c{{e}^{x}}} \right)+c\] done
clear
D)
\[\frac{b}{a}\log \left( \frac{b+c{{e}^{x}}}{{{e}^{x}}} \right)+c\] done
clear
View Solution play_arrow
-
question_answer12)
\[\int_{{}}^{{}}{\sin \sqrt{x}}\ dx=\] [Roorkee 1977]
A)
\[2[\sin \sqrt{x}-\cos \sqrt{x}]+c\] done
clear
B)
\[2[\sin \sqrt{x}-\sqrt{x}\cos \sqrt{x}]+c\] done
clear
C)
\[2[\sin \sqrt{x}+\cos \sqrt{x}]+c\] done
clear
D)
\[2[\sin \sqrt{x}+\sqrt{x}\cos \sqrt{x}]+c\] done
clear
View Solution play_arrow
-
question_answer13)
\[\int_{{}}^{{}}{\frac{{{x}^{2}}}{{{(9-{{x}^{2}})}^{3/2}}}\ dx=}\]
A)
\[\frac{x}{\sqrt{9-{{x}^{2}}}}-{{\sin }^{-1}}\frac{x}{3}+c\] done
clear
B)
\[\frac{x}{\sqrt{9-{{x}^{2}}}}+{{\sin }^{-1}}\frac{x}{3}+c\] done
clear
C)
\[{{\sin }^{-1}}\frac{x}{3}-\frac{x}{\sqrt{9-{{x}^{2}}}}+c\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer14)
\[\int_{{}}^{{}}{x\sqrt{\frac{1-{{x}^{2}}}{1+{{x}^{2}}}}}\ dx=\]
A)
\[\frac{1}{2}[{{\sin }^{-1}}{{x}^{2}}+\sqrt{1-{{x}^{4}}}]+c\] done
clear
B)
\[\frac{1}{2}[{{\sin }^{-1}}{{x}^{2}}+\sqrt{1-{{x}^{2}}}]+c\] done
clear
C)
\[{{\sin }^{-1}}{{x}^{2}}+\sqrt{1-{{x}^{4}}}+c\] done
clear
D)
\[{{\sin }^{-1}}{{x}^{2}}+\sqrt{1-{{x}^{2}}}+c\] done
clear
View Solution play_arrow
-
question_answer15)
If \[\int_{{}}^{{}}{f(x)\sin x\cos x\ dx=\frac{1}{2({{b}^{2}}-{{a}^{2}})}\log (f(x))}+c\], then \[f(x)=\]
A)
\[\frac{1}{{{a}^{2}}{{\sin }^{2}}x+{{b}^{2}}{{\cos }^{2}}x}\] done
clear
B)
\[\frac{1}{{{a}^{2}}{{\sin }^{2}}x-{{b}^{2}}{{\cos }^{2}}x}\] done
clear
C)
\[\frac{1}{{{a}^{2}}{{\cos }^{2}}x+{{b}^{2}}{{\sin }^{2}}x}\] done
clear
D)
\[\frac{1}{{{a}^{2}}{{\cos }^{2}}x-{{b}^{2}}{{\sin }^{2}}x}\] done
clear
View Solution play_arrow
-
question_answer16)
\[\int_{{}}^{{}}{\frac{dx}{4{{\sin }^{2}}x+5{{\cos }^{2}}x}=}\] [AISSE 1986]
A)
\[\frac{1}{\sqrt{5}}{{\tan }^{-1}}\left( \frac{2\tan x}{\sqrt{5}} \right)+c\] done
clear
B)
\[\frac{1}{\sqrt{5}}{{\tan }^{-1}}\left( \frac{\tan x}{\sqrt{5}} \right)+c\] done
clear
C)
\[\frac{1}{2\sqrt{5}}{{\tan }^{-1}}\left( \frac{2\tan x}{\sqrt{5}} \right)+c\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer17)
\[\int_{{}}^{{}}{\frac{{{x}^{2}}+1}{{{x}^{4}}-{{x}^{2}}+1}\ dx=}\] [MP PET 1991]
A)
\[{{\tan }^{-1}}\left( \frac{1+{{x}^{2}}}{x} \right)+c\] done
clear
B)
\[{{\cot }^{-1}}\left( \frac{1+{{x}^{2}}}{x} \right)+c\] done
clear
C)
\[{{\tan }^{-1}}\left( \frac{{{x}^{2}}-1}{x} \right)+c\] done
clear
D)
\[{{\cot }^{-1}}\left( \frac{{{x}^{2}}-1}{x} \right)+c\] done
clear
View Solution play_arrow
-
question_answer18)
\[\int_{{}}^{{}}{{{(\log x)}^{2}}\ dx=}\] [IIT 1971, 77]
A)
\[x{{(\log x)}^{2}}-2x\log x-2x+c\] done
clear
B)
\[x{{(\log x)}^{2}}-2x\log x-x+c\] done
clear
C)
\[x{{(\log x)}^{2}}-2x\log x+2x+c\] done
clear
D)
\[x{{(\log x)}^{2}}-2x\log x+x+c\] done
clear
View Solution play_arrow
-
question_answer19)
The value of \[\int{\frac{\sqrt{({{x}^{2}}-{{a}^{2}})}}{x}dx}\] will be [UPSEAT 1999]
A)
\[\sqrt{({{x}^{2}}-{{a}^{2}})}\,-a{{\tan }^{-1}}\left[ \frac{\sqrt{({{x}^{2}}-{{a}^{2}})}}{a} \right]\] done
clear
B)
\[\sqrt{({{x}^{2}}-{{a}^{2}})}\,+a{{\tan }^{-1}}\left[ \frac{\sqrt{({{x}^{2}}-{{a}^{2}})}}{a} \right]\] done
clear
C)
\[\sqrt{({{x}^{2}}-{{a}^{2}})}\,+{{a}^{2}}{{\tan }^{-1}}[\sqrt{{{x}^{2}}-{{a}^{2}}}]\] done
clear
D)
\[{{\tan }^{-1}}x/a+c\] done
clear
View Solution play_arrow
-
question_answer20)
\[\int_{{}}^{{}}{{{\tan }^{3}}}2x\sec 2x\ dx=\] [IIT 1977]
A)
\[\frac{1}{6}{{\sec }^{3}}2x-\frac{1}{2}\sec 2x+c\] done
clear
B)
\[\frac{1}{6}{{\sec }^{3}}2x+\frac{1}{2}\sec 2x+c\] done
clear
C)
\[\frac{1}{9}{{\sec }^{2}}2x-\frac{1}{3}\sec 2x+c\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer21)
\[\int_{{}}^{{}}{x{{\sin }^{-1}}x\ dx}=\] [MP PET 1991]
A)
\[\left( \frac{{{x}^{2}}}{2}-\frac{1}{4} \right){{\sin }^{-1}}x+\frac{x}{4}\sqrt{1-{{x}^{2}}}+c\] done
clear
B)
\[\left( \frac{{{x}^{2}}}{2}+\frac{1}{4} \right){{\sin }^{-1}}x+\frac{x}{4}\sqrt{1-{{x}^{2}}}+c\] done
clear
C)
\[\left( \frac{{{x}^{2}}}{2}-\frac{1}{4} \right){{\sin }^{-1}}x-\frac{x}{4}\sqrt{1-{{x}^{2}}}+c\] done
clear
D)
\[\left( \frac{{{x}^{2}}}{2}+\frac{1}{4} \right){{\sin }^{-1}}x-\frac{x}{4}\sqrt{1-{{x}^{2}}}+c\] done
clear
View Solution play_arrow
-
question_answer22)
\[\int_{{}}^{{}}{\sqrt{\frac{a-x}{x}}\ dx=}\]
A)
\[a\left[ {{\sin }^{-1}}\sqrt{\frac{x}{a}}+\sqrt{\frac{x}{a}}\sqrt{\frac{a-x}{a}} \right]+c\] done
clear
B)
\[{{\sin }^{-1}}\frac{x}{a}+\frac{x}{a}\sqrt{{{a}^{2}}-{{x}^{2}}}+c\] done
clear
C)
\[a\left[ {{\sin }^{-1}}\frac{x}{a}-\frac{x}{a}\sqrt{{{a}^{2}}-{{x}^{2}}} \right]+c\] done
clear
D)
\[{{\sin }^{-1}}\frac{x}{a}-\frac{x}{a}\sqrt{{{a}^{2}}-{{x}^{2}}}+c\] done
clear
View Solution play_arrow
-
question_answer23)
If \[x\in \left( \frac{\pi }{4},\frac{3\pi }{4} \right)\], then \[\int_{{}}^{{}}{\frac{\sin x-\cos x}{\sqrt{1-\sin 2x}}{{e}^{\sin x}}\cos x\ dx=}\]
A)
\[{{e}^{\sin x}}+c\] done
clear
B)
\[{{e}^{\sin x-\cos x}}+c\] done
clear
C)
\[{{e}^{\sin x+\cos x}}+c\] done
clear
D)
\[{{e}^{\cos x-\sin x}}+c\] done
clear
View Solution play_arrow
-
question_answer24)
If \[\int_{{}}^{{}}{\frac{4{{e}^{x}}+6{{e}^{-x}}}{9{{e}^{x}}-4{{e}^{-x}}}dx=Ax+B\log (9{{e}^{2x}}-4)}+C\], then A, B and C are [IIT 1990]
A)
\[A=\frac{3}{2},\ B=\frac{36}{35},\ C=\frac{3}{2}\log 3+\]constant done
clear
B)
\[A=\frac{3}{2},\ B=\frac{35}{36},\ C=\frac{3}{2}\log 3+\]constant done
clear
C)
\[A=-\frac{3}{2},\ B=-\frac{35}{36},\ C=-\frac{3}{2}\log 3+\]constant done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer25)
The value of \[\int{{{\sec }^{3}}x\,\,dx}\] will be [UPSEAT 1999]
A)
\[\frac{1}{2}\left[ \,\sec x\tan x+\log (\sec x+\tan x) \right]\] done
clear
B)
\[\frac{1}{3}\left[ \,\sec x\tan x+\log (\sec x+\tan x) \right]\] done
clear
C)
\[\frac{1}{4}\left[ \,\sec x\tan x+\log (\sec x+\tan x) \right]\] done
clear
D)
\[\frac{1}{8}\left[ \,\sec x\tan x+\log (\sec x+\tan x) \right]\] done
clear
View Solution play_arrow
-
question_answer26)
\[\int_{{}}^{{}}{\frac{x-1}{{{(x+1)}^{3}}}{{e}^{x}}\ dx=}\] [IIT 1983; MP PET 1990]
A)
\[\frac{-{{e}^{x}}}{{{(x+1)}^{2}}}+c\] done
clear
B)
\[\frac{{{e}^{x}}}{{{(x+1)}^{2}}}+c\] done
clear
C)
\[\frac{{{e}^{x}}}{{{(x+1)}^{3}}}+c\] done
clear
D)
\[\frac{-{{e}^{x}}}{{{(x+1)}^{3}}}+c\] done
clear
View Solution play_arrow
-
question_answer27)
If \[I=\int_{{}}^{{}}{{{e}^{x}}\sin 2x\ dx}\], then for what value of K, \[KI={{e}^{x}}(\sin 2x-2\cos 2x)+\]constant [MP PET 1992]
A)
1 done
clear
B)
3 done
clear
C)
5 done
clear
D)
7 done
clear
View Solution play_arrow
-
question_answer28)
The value of \[\int{\frac{dx}{3-2x-{{x}^{2}}}}\] will be [UPSEAT 1999]
A)
\[\frac{1}{4}\log \,\left( \frac{3+x}{1-x} \right)\] done
clear
B)
\[\frac{1}{3}\log \,\left( \frac{3+x}{1-x} \right)\] done
clear
C)
\[\frac{1}{2}\log \,\left( \frac{3+x}{1-x} \right)\] done
clear
D)
\[\log \,\left( \frac{1-x}{3+x} \right)\] done
clear
View Solution play_arrow
-
question_answer29)
\[\int_{{}}^{{}}{x\sqrt{2x+3}}\ dx=\] [AISSE 1985]
A)
\[\frac{x}{3}{{(2x+3)}^{3/2}}-\frac{1}{15}{{(2x+3)}^{5/2}}+c\] done
clear
B)
\[\frac{x}{3}{{(2x+3)}^{3/2}}+\frac{1}{15}{{(2x+3)}^{5/2}}+c\] done
clear
C)
\[\frac{x}{2}{{(2x+3)}^{3/2}}+\frac{1}{6}{{(2x+3)}^{5/2}}+c\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer30)
\[\int_{{}}^{{}}{\cos 2\theta \log \left( \frac{\cos \theta +\sin \theta }{\cos \theta -\sin \theta } \right)\ d\theta =}\] [IIT 1994]
A)
\[{{(\cos \theta -\sin \theta )}^{2}}\log \left( \frac{\cos \theta +\sin \theta }{\cos \theta -\sin \theta } \right)\] done
clear
B)
\[{{(\cos \theta +\sin \theta )}^{2}}\log \left( \frac{\cos \theta +\sin \theta }{\cos \theta -\sin \theta } \right)\] done
clear
C)
\[\frac{{{(\cos \theta -\sin \theta )}^{2}}}{2}\log \left( \frac{\cos \theta -\sin \theta }{\cos \theta +\sin \theta } \right)\] done
clear
D)
\[\frac{1}{2}\sin 2\theta \log \tan \left( \frac{\pi }{4}+\theta \right)-\frac{1}{2}\log \sec 2\theta \] done
clear
View Solution play_arrow
-
question_answer31)
\[\int_{{}}^{{}}{\frac{{{x}^{2}}}{{{(x\sin x+\cos x)}^{2}}}\ dx=}\] [MNR 1989; RPET 2000]
A)
\[\frac{\sin x+\cos x}{x\sin x+\cos x}\] done
clear
B)
\[\frac{x\sin x-\cos x}{x\sin x+\cos x}\] done
clear
C)
\[\frac{\sin x-x\cos x}{x\sin x+\cos x}\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer32)
If \[u=\int_{{}}^{{}}{{{e}^{ax}}\cos bx\ dx}\] and \[v=\int_{{}}^{{}}{{{e}^{ax}}\sin bx\ dx}\], then \[({{a}^{2}}+{{b}^{2}})({{u}^{2}}+{{v}^{2}})=\]
A)
\[2{{e}^{ax}}\] done
clear
B)
\[({{a}^{2}}+{{b}^{2}}){{e}^{2ax}}\] done
clear
C)
\[{{e}^{2ax}}\] done
clear
D)
\[({{a}^{2}}-{{b}^{2}}){{e}^{2ax}}\] done
clear
View Solution play_arrow
-
question_answer33)
If \[{{I}_{n}}=\int{{{(\log x)}^{n}}\,\,dx},\] then \[{{I}_{n}}+n{{I}_{n-1}}=\] [Karnataka CET 2003]
A)
\[x{{(\log x)}^{n}}\] done
clear
B)
\[{{(x\log x)}^{n}}\] done
clear
C)
\[{{(\log x)}^{n-1}}\] done
clear
D)
\[n{{(\log x)}^{n}}\] done
clear
View Solution play_arrow
-
question_answer34)
\[\int_{{}}^{{}}{{{e}^{x/2}}\sin \left( \frac{x}{2}+\frac{\pi }{4} \right)\ dx=}\] [Roorkee 1982]
A)
\[{{e}^{x/2}}\cos \frac{x}{2}+c\] done
clear
B)
\[\sqrt{2}{{e}^{x/2}}\cos \frac{x}{2}+c\] done
clear
C)
\[{{e}^{x/2}}\sin \frac{x}{2}+c\] done
clear
D)
\[\sqrt{2}{{e}^{x/2}}\sin \frac{x}{2}+c\] done
clear
View Solution play_arrow
-
question_answer35)
If \[\int_{{}}^{{}}{\frac{2x+3}{{{x}^{2}}-5x+6}}\ dx=9\ \ln (x-3)-7\ln (x-2)+A\], then \[A=\] [MP PET 1992]
A)
\[5\ln (x-2)+\]Constant done
clear
B)
\[-4\ln (x-3)+\]constant done
clear
C)
Constant done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer36)
\[\int_{{}}^{{}}{\frac{dx}{2+\cos x}=}\]
A)
\[2{{\tan }^{-1}}\left( \frac{1}{\sqrt{3}}\tan \frac{x}{2} \right)+c\] done
clear
B)
\[\frac{2}{\sqrt{3}}{{\tan }^{-1}}\left( \frac{1}{\sqrt{3}}\tan \frac{x}{2} \right)+c\] done
clear
C)
\[\frac{1}{\sqrt{3}}{{\tan }^{-1}}\left( \frac{1}{\sqrt{3}}\tan \frac{x}{2} \right)+c\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer37)
\[\int_{{}}^{{}}{\frac{x}{{{x}^{4}}+{{x}^{2}}+1}dx}\] equal to [MP PET 2004]
A)
\[\frac{1}{3}{{\tan }^{-1}}\left( \frac{2{{x}^{2}}+1}{3} \right)\] done
clear
B)
\[\frac{1}{\sqrt{3}}{{\tan }^{-1}}\left( \frac{2{{x}^{2}}+1}{\sqrt{3}} \right)\] done
clear
C)
\[\frac{1}{\sqrt{3}}{{\tan }^{-1}}(2{{x}^{2}}+1)\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer38)
\[\int_{{}}^{{}}{\frac{dx}{(\sin x+\sin 2x)}=}\] [IIT 1984]
A)
\[\frac{1}{6}\log (1-\cos x)+\frac{1}{2}\log (1+\cos x)-\frac{2}{3}\log (1+2\cos x)\] done
clear
B)
\[6\log (1-\cos x)+2\log (1+\cos x)-\frac{2}{3}\log (1+2\cos x)\] done
clear
C)
\[6\log (1-\cos x)+\frac{1}{2}\log (1+\cos x)+\frac{2}{3}\log (1+2\cos x)\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer39)
If \[\int_{{}}^{{}}{\frac{2x+3}{(x-1)({{x}^{2}}+1)}\ dx={{\log }_{e}}\left\{ {{(x-1)}^{\frac{5}{2}}}{{({{x}^{2}}+1)}^{a}} \right\}}-\frac{1}{2}{{\tan }^{-1}}x+A\] , where A is any arbitrary constant, then the value of ?a? is [MP PET 1998]
A)
5/4 done
clear
B)
- 5/3 done
clear
C)
- 5/6 done
clear
D)
- 5/4 done
clear
View Solution play_arrow
-
question_answer40)
If \[\int{\frac{(2{{x}^{2}}+1)\,\,dx}{({{x}^{2}}-4)\,\,({{x}^{2}}-1)}=\log \left[ {{\left( \frac{x+1}{x-1} \right)}^{a}}\,\,{{\left( \frac{x-2}{x+2} \right)}^{b}} \right]}+C,\] then the values of a and b are respectively [Roorkee 2000]
A)
1/2, ¾ done
clear
B)
-1, 3/2 done
clear
C)
1, 3/2 done
clear
D)
-1/2, ¾ done
clear
View Solution play_arrow