-
question_answer1)
The function \[f:R\to R\] is defined by \[f\left( x \right)={{\cos }^{2}}x+{{\sin }^{4}}x\] for \[x\in R\]. Then the range of \[f(x)\]is
A)
\[\left( \frac{3}{4},1 \right]\] done
clear
B)
\[\left[ \frac{3}{4},1 \right)\] done
clear
C)
\[\left[ \frac{3}{4},1 \right]\] done
clear
D)
\[\left( \frac{3}{4},1 \right)\] done
clear
View Solution play_arrow
-
question_answer2)
Let \[f:\left[ -\frac{\pi }{3},\frac{2\pi }{3} \right]\to [0,4]\] be a function defined as \[f(x)=\sqrt{3}\sin x-\cos x+2\].Then \[{{f}^{-1}}(x)\]is given by
A)
\[{{\sin }^{-1}}\left( \frac{x-2}{2} \right)-\frac{\pi }{6}\] done
clear
B)
\[{{\sin }^{-1}}\left( \frac{x-2}{2} \right)+\frac{\pi }{6}\] done
clear
C)
\[\frac{2\pi }{3}+{{\cos }^{-1}}\left( \frac{x-2}{2} \right)\] done
clear
D)
none of these done
clear
View Solution play_arrow
-
question_answer3)
The domain of the function \[f(x)={{\left[ {{\log }_{10}}\left( \frac{5x-{{x}^{2}}}{4} \right) \right]}^{1/2}}\]is
A)
\[-\infty <x<\infty \] done
clear
B)
\[1\le x\le 4\] done
clear
C)
\[4\le x\le 16\] done
clear
D)
\[-1\le x\le 3\] done
clear
View Solution play_arrow
-
question_answer4)
The range of \[f(x)=si{{n}^{-1}}(\sqrt{{{x}^{2}}+x+1})\] is
A)
\[\left( 0,\frac{\pi }{2} \right]\] done
clear
B)
\[\left( 0,\frac{\pi }{3} \right]\] done
clear
C)
\[\left[ \frac{\pi }{3},\frac{\pi }{2} \right]\] done
clear
D)
\[\left[ \frac{\pi }{6},\frac{\pi }{3} \right]\] done
clear
View Solution play_arrow
-
question_answer5)
The range of the function \[f(x)=\left| x-1 \right|+\left| x-2 \right|,-1\le x\le 3\] is
A)
\[\left[ 1,\text{ }3 \right]\] done
clear
B)
\[[1\text{ },5]\] done
clear
C)
\[\left[ 3,\text{ }5 \right]\] done
clear
D)
none of these done
clear
View Solution play_arrow
-
question_answer6)
If \[f(x+y)=f(x)+f(y)-xy-1\,\forall \,x,\,\,y\in R\] and\[f(1)=1,\] then the number of solutions of \[f\left( n \right)=n,\]\[n\in N\], is
A)
0 done
clear
B)
1 done
clear
C)
2 done
clear
D)
more then 2 done
clear
View Solution play_arrow
-
question_answer7)
The function \[f:(-\infty ,-1)\to \left( 0,{{e}^{5}} \right]\] defined by \[f(x)={{e}^{{{x}^{3-3x+2}}}}\] is
A)
many-one and onto done
clear
B)
many-one and into done
clear
C)
one-one and onto done
clear
D)
one-one and into done
clear
View Solution play_arrow
-
question_answer8)
If \[f(x)\] is an invertible function and \[g\left( x \right)=2f\left( x \right)+5,\] then the value of \[{{g}^{-1}}(x)\] is
A)
\[2{{f}^{-1}}(x)-5\] done
clear
B)
\[\frac{1}{2{{f}^{-1}}(x)+5}\] done
clear
C)
\[\frac{1}{2}{{f}^{-1}}(x)=5\] done
clear
D)
\[{{f}^{-1}}\left( \frac{x-5}{2} \right)\] done
clear
View Solution play_arrow
-
question_answer9)
If \[g(x)={{x}^{2}}+x-2\] and \[\frac{1}{2}gof(x)=2{{x}^{2}}-5x+2,\]then which is not a possible f(x)?
A)
\[2x-3\] done
clear
B)
\[-2x+2\] done
clear
C)
\[x-3\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer10)
A function F(x) satisfies the functional equation \[{{x}^{2}}F(x)+F(1-x)=2x-{{x}^{4}}\]for all real x. F(x) must be
A)
\[{{x}^{2}}\] done
clear
B)
\[1-{{x}^{2}}\] done
clear
C)
\[1+{{x}^{2}}\] done
clear
D)
\[{{x}^{2}}+x+1\] done
clear
View Solution play_arrow
-
question_answer11)
Let\[f :X\to y\,f(x)=sinx+cosx+2\sqrt{2}\]be invertible. Then which \[X\to Y\]is not possible?
A)
\[\left[ \frac{\pi }{4},\frac{5\pi }{4} \right]\to [\sqrt{2},3\sqrt{2}]\] done
clear
B)
\[\left[ -\frac{3\pi }{4},\frac{\pi }{4} \right]\to [\sqrt{2},3\sqrt{2}]\] done
clear
C)
\[\left[ -\frac{3\pi }{4},\frac{3\pi }{4} \right]\to [\sqrt{2},3\sqrt{2}]\] done
clear
D)
none of these done
clear
View Solution play_arrow
-
question_answer12)
The domain of the functions \[f(x)=\frac{1}{\sqrt{\left\{ \operatorname{sinx} \right\}+\left\{ \sin (\pi +x) \right\}}}\] where \[\left\{ \cdot \right\}\] denotes the fractional part, is
A)
\[[0,\pi ]\] done
clear
B)
\[(2n+1)\pi /2,n\in Z\] done
clear
C)
\[(0,\pi )\] done
clear
D)
none of these done
clear
View Solution play_arrow
-
question_answer13)
Let \[g(x)=f(x)-1.\] If \[f(x)+f(1-x)=2\forall x\in R\], then \[g(x)\] is symmetrical about
A)
the origin done
clear
B)
the line\[x=\frac{1}{2}\] done
clear
C)
the point (1, 0) done
clear
D)
the point \[\left( \frac{1}{2},0 \right)\] done
clear
View Solution play_arrow
-
question_answer14)
The range of the function f defined by \[f(x)=\left[ \frac{1}{\sin \left\{ x \right\}} \right]\] (where [.] and \[\left\{ . \right\}\], respectively, denote the greatest integer and the fractional part functions) is
A)
I, the set of integers done
clear
B)
N, the set of natural numbers done
clear
C)
W, the set of whole numbers done
clear
D)
\[\left\{ 1,2,3,4.... \right\}\] done
clear
View Solution play_arrow
-
question_answer15)
If \[f(x)=\left\{ \begin{matrix} {{x}^{2}},\,\,\,for\,x\ge 0 \\ x,\,\,\,\,for\,x<0 \\ \end{matrix} \right.,\] then fof (x) is given by
A)
\[{{x}^{2}}for\,x\ge 0,\,\]\[x\text{ }for\text{ }x<0\] done
clear
B)
\[{{x}^{4}}for\,x\ge 0,\,\]\[{{x}^{2}}for\text{ }x<0\] done
clear
C)
\[{{x}^{4}}for\,x\ge 0,\,\]\[-{{x}^{2}}for\text{ }x<0\] done
clear
D)
\[{{x}^{4}}for\,x\ge 0,\,\]\[x\text{ }for\text{ }x<0\] done
clear
View Solution play_arrow
-
question_answer16)
The range of \[f(x)=co{{s}^{-1}}\left( \frac{1+{{x}^{2}}}{2x} \right)+\sqrt{2-{{x}^{2}}}\]is
A)
\[\left\{ 0,\,\,1+\frac{\pi }{2} \right\}\] done
clear
B)
\[\left\{ 0,\,\,1+\pi \right\}\] done
clear
C)
\[\left\{ 1,\,\,1+\frac{\pi }{2} \right\}\] done
clear
D)
\[\left\{ 1,\,\,1+\pi \right\}\] done
clear
View Solution play_arrow
-
question_answer17)
The range of following function is \[f(x)=\sqrt{(1-\cos x)\sqrt{(1-\cos x)\sqrt{(1-\cos x)\sqrt{...\infty }}}}\]
A)
\[\left[ 0,\text{ }1 \right]\] done
clear
B)
\[\left[ 0,\text{ }1/2 \right]\] done
clear
C)
\[\left[ 0,\text{ }2 \right]\] done
clear
D)
none of these done
clear
View Solution play_arrow
-
question_answer18)
Which pair of functions is identical?
A)
\[{{\sin }^{-1}}(sinx)\,\,and\,\,sin\,(si{{n}^{-1}}x)\] done
clear
B)
\[{{\log }_{e}}{{e}^{x}},{{e}^{{{\log }_{e}}x}}\] done
clear
C)
\[{{\log }_{e}}{{x}^{2}},2lo{{g}_{e}}x\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer19)
A function f form the set of natural numbers to integers defined by \[f(n)=\left\{ \begin{matrix} \frac{n-1}{2},\,\,\,\text{when}\,\,n\,\,\text{odd} \\ -\frac{n}{2}\,,\,\,\,\text{when}\,\,n\,\,\text{is}\,\,\text{odd} \\ \end{matrix}\,\,\,\text{is} \right.\]
A)
one-one but not onto. done
clear
B)
onto but not one-one done
clear
C)
one-one and onto both. done
clear
D)
neither one-one nor onto. done
clear
View Solution play_arrow
-
question_answer20)
Let \[R=\left\{ \left( 1,3 \right),\left( 4,2 \right),\left( 2,4 \right),\left( 2,3 \right),\left( 3,1 \right) \right\}\] be a relation on the set \[A=\left\{ 1,2,3,4 \right\}.\]The relation R is
A)
a function done
clear
B)
reflexive done
clear
C)
not symmetric done
clear
D)
transitive done
clear
View Solution play_arrow
-
question_answer21)
If f is periodic, g is polynomial function, f (g(x)) is periodic, \[g\left( 2 \right)=3,\text{ and }g\left( 4 \right)=7,\] then g(6) is _______.
View Solution play_arrow
-
question_answer22)
The function of satisfies the functional equation 3\[3f(x)+2f\left( \frac{x+59}{x-1} \right)=10x+30\]for all real \[x\ne 1.\]The value of f(7) is ______.
View Solution play_arrow
-
question_answer23)
The total number of solutions of \[{{[x]}^{2}}=x+2\{x\}\], where [.] and {.} denote the greatest integer and the fractional part functions, respectively, is equal to ____.
View Solution play_arrow
-
question_answer24)
If \[f\left( x+\frac{1}{2} \right)+f\left( x-\frac{1}{2} \right)=f(x)\] for all \[x\in R\], then the period of f(x) is _____.
View Solution play_arrow
-
question_answer25)
If \[{{e}^{f(x)}}=\frac{10+x}{10-x},\,\,\] \[x\in (-10,10)\] and\[f(x)=kf\left( \frac{200x}{100+{{x}^{2}}} \right)\], then k =_____.
View Solution play_arrow