-
question_answer1)
\[\frac{{{\cot }^{2}}15{}^\circ -1}{{{\cot }^{2}}15{}^\circ +1}=\] [MP PET 1998]
A)
\[\frac{1}{2}\] done
clear
B)
\[\frac{\sqrt{3}}{2}\] done
clear
C)
\[\frac{3\sqrt{3}}{4}\] done
clear
D)
\[\sqrt{3}\] done
clear
View Solution play_arrow
-
question_answer2)
If \[\cos \theta =\frac{3}{5}\]and \[\cos \varphi =\frac{4}{5},\]where \[\theta \]and \[\varphi \]are positive acute angles, then \[\cos \frac{\theta -\varphi }{2}=\] [MP PET 1988]
A)
\[\frac{7}{\sqrt{2}}\] done
clear
B)
\[\frac{7}{5\sqrt{2}}\] done
clear
C)
\[\frac{7}{\sqrt{5}}\] done
clear
D)
\[\frac{7}{2\sqrt{5}}\] done
clear
View Solution play_arrow
-
question_answer3)
If \[\sec \theta =1\frac{1}{4}\], then \[\tan \frac{\theta }{2}=\]
A)
\[\frac{1}{3}\] done
clear
B)
\[\frac{3}{4}\] done
clear
C)
\[\frac{1}{4}\] done
clear
D)
\[\frac{5}{4}\] done
clear
View Solution play_arrow
-
question_answer4)
If \[\tan \frac{A}{2}=\frac{3}{2},\]then \[\frac{1+\cos A}{1-\cos A}=\]
A)
\[-5\] done
clear
B)
\[5\] done
clear
C)
\[9/4\] done
clear
D)
\[4/9\] done
clear
View Solution play_arrow
-
question_answer5)
If \[\cos A=\frac{\sqrt{3}}{2},\]then \[\tan 3A=\]
A)
\[0\] done
clear
B)
\[1/2\] done
clear
C)
\[1\] done
clear
D)
\[\infty \] done
clear
View Solution play_arrow
-
question_answer6)
\[\sin 4\theta \]can be written as
A)
\[4\sin \theta (1-2{{\sin }^{2}}\theta )\sqrt{1-{{\sin }^{2}}\theta }\] done
clear
B)
\[2\sin \theta \cos \theta {{\sin }^{2}}\theta \] done
clear
C)
\[4\sin \theta -6{{\sin }^{3}}\theta \] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer7)
If \[\cos 2B=\frac{\cos (A+C)}{\cos (A-C)}\], then \[\tan A,\ \tan B,\ \tan C\] are in
A)
A.P. done
clear
B)
G.P. done
clear
C)
H.P. done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer8)
If \[a\tan \theta =b\], then \[a\cos 2\theta +b\sin 2\theta =\] [EAMCET 1981, 82; MP PET 1996; J & K 2005]
A)
\[a\] done
clear
B)
\[b\] done
clear
C)
\[-a\] done
clear
D)
\[-b\] done
clear
View Solution play_arrow
-
question_answer9)
\[\frac{\sin 2A}{1+\cos 2A}.\frac{\cos A}{1+\cos A}=\]
A)
\[\tan \frac{A}{2}\] done
clear
B)
\[\cot \frac{A}{2}\] done
clear
C)
\[\sec \frac{A}{2}\] done
clear
D)
\[\text{cosec}\frac{A}{2}\] done
clear
View Solution play_arrow
-
question_answer10)
\[\frac{1}{\tan 3A-\tan A}-\frac{1}{\cot 3A-\cot A}=\]
A)
\[\tan A\] done
clear
B)
\[\tan 2A\] done
clear
C)
\[\cot A\] done
clear
D)
\[\cot 2A\] done
clear
View Solution play_arrow
-
question_answer11)
\[\text{cosec }A-2\cot 2A\cos A=\]
A)
\[2\sin A\] done
clear
B)
\[\sec A\] done
clear
C)
\[2\cos A\cot A\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer12)
\[\sqrt{2+\sqrt{2+2\cos 4\theta }}=\]
A)
\[\cos \theta \] done
clear
B)
\[\sin \theta \] done
clear
C)
\[2\cos \theta \] done
clear
D)
\[2\sin \theta \] done
clear
View Solution play_arrow
-
question_answer13)
If \[\cos 3\theta =\alpha \cos \theta +\beta {{\cos }^{3}}\theta ,\]then \[(\alpha ,\beta )=\]
A)
\[(3,\,4)\] done
clear
B)
\[(4,\,3)\] done
clear
C)
\[(-3,\,4)\] done
clear
D)
\[(3,\,-4)\] done
clear
View Solution play_arrow
-
question_answer14)
\[{{(\cos \alpha +\cos \beta )}^{2}}+{{(\sin \alpha +\sin \beta )}^{2}}=\]
A)
\[4{{\cos }^{2}}\frac{\alpha -\beta }{2}\] done
clear
B)
\[4{{\sin }^{2}}\frac{\alpha -\beta }{2}\] done
clear
C)
\[4{{\cos }^{2}}\frac{\alpha +\beta }{2}\] done
clear
D)
\[4{{\sin }^{2}}\frac{\alpha +\beta }{2}\] done
clear
View Solution play_arrow
-
question_answer15)
If \[\tan x=\frac{b}{a},\]then \[\sqrt{\frac{a+b}{a-b}}+\sqrt{\frac{a-b}{a+b}}=\] [MP PET 1990, 2002]
A)
\[\frac{2\sin x}{\sqrt{\sin 2x}}\] done
clear
B)
\[\frac{2\cos x}{\sqrt{\cos 2x}}\] done
clear
C)
\[\frac{2\cos x}{\sqrt{\sin 2x}}\] done
clear
D)
\[\frac{2\sin x}{\sqrt{\cos 2x}}\] done
clear
View Solution play_arrow
-
question_answer16)
\[1-2{{\sin }^{2}}\left( \frac{\pi }{4}+\theta \right)=\]
A)
\[\cos 2\theta \] done
clear
B)
\[-\cos 2\theta \] done
clear
C)
\[\sin 2\theta \] done
clear
D)
\[-\sin 2\theta \] done
clear
View Solution play_arrow
-
question_answer17)
\[\frac{\sin 3A-\cos \left( \frac{\pi }{2}-A \right)}{\cos A+\cos (\pi +3A)}=\]
A)
\[\tan A\] done
clear
B)
\[\cot A\] done
clear
C)
\[\tan 2A\] done
clear
D)
\[\cot 2A\] done
clear
View Solution play_arrow
-
question_answer18)
If \[\tan A=\frac{1}{2},\]then \[\tan 3A=\]
A)
\[\frac{9}{2}\] done
clear
B)
\[\frac{11}{2}\] done
clear
C)
\[\frac{7}{2}\] done
clear
D)
\[-\frac{1}{2}\] done
clear
View Solution play_arrow
-
question_answer19)
\[\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}=\] (when x lies in IInd quadrant)
A)
\[\sin \frac{x}{2}\] done
clear
B)
\[\tan \frac{x}{2}\] done
clear
C)
\[\sec \frac{x}{2}\] done
clear
D)
\[\text{cosec}\frac{x}{2}\] done
clear
View Solution play_arrow
-
question_answer20)
\[(\sec 2A+1){{\sec }^{2}}A=\]
A)
\[\sec A\] done
clear
B)
\[2\sec A\] done
clear
C)
\[\sec 2A\] done
clear
D)
\[2\sec 2A\] done
clear
View Solution play_arrow
-
question_answer21)
\[2\sin A{{\cos }^{3}}A-2{{\sin }^{3}}A\cos A=\] [Roorkee 1975; Kerala (Engg.) 2001]
A)
\[\sin 4A\] done
clear
B)
\[\frac{1}{2}\sin 4A\] done
clear
C)
\[\frac{1}{4}\sin 4A\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer22)
\[\frac{\sin \theta +\sin 2\theta }{1+\cos \theta +\cos 2\theta }=\] [Roorkee 1971]
A)
\[\frac{1}{2}\tan \theta \] done
clear
B)
\[\frac{1}{2}\cot \theta \] done
clear
C)
\[\tan \theta \] done
clear
D)
\[\cot \theta \] done
clear
View Solution play_arrow
-
question_answer23)
If\[\frac{2\sin \alpha }{\{1+\cos \alpha +\sin \alpha \}}=y,\]then \[\frac{\{1-\cos \alpha +\sin \alpha \}}{1+\sin \alpha }=\] [BIT Ranchi 1996; Orissa JEE 2004]
A)
\[\frac{1}{y}\] done
clear
B)
\[y\] done
clear
C)
\[1-y\] done
clear
D)
\[1+y\] done
clear
View Solution play_arrow
-
question_answer24)
If \[\tan \alpha =\frac{1}{7}\]and \[\sin \beta =\frac{1}{\sqrt{10}}\left( 0<\alpha ,\,\beta <\frac{\pi }{2} \right)\], then \[2\beta \]is equal to
A)
\[\frac{\pi }{4}-\alpha \] done
clear
B)
\[\frac{3\pi }{4}-\alpha \] done
clear
C)
\[\frac{\pi }{8}-\frac{\alpha }{2}\] done
clear
D)
\[\frac{3\pi }{8}-\frac{\alpha }{2}\] done
clear
View Solution play_arrow
-
question_answer25)
If \[\cos (\theta -\alpha ),\ \cos \theta \]and \[\cos (\theta +\alpha )\]are in H.P., then \[\cos \theta \sec \frac{\alpha }{2}\]is equal to [IIT 1997]
A)
\[\pm \sqrt{2}\] done
clear
B)
\[\pm \sqrt{3}\] done
clear
C)
\[\pm 1/\sqrt{2}\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer26)
If \[\sin \theta +\sin \varphi =a\]and \[\cos \theta +\cos \varphi =b,\]then \[\tan \frac{\theta -\varphi }{2}\]is equal to [MP PET 1993]
A)
\[\sqrt{\frac{{{a}^{2}}+{{b}^{2}}}{4-{{a}^{2}}-{{b}^{2}}}}\] done
clear
B)
\[\sqrt{\frac{4-{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}}\] done
clear
C)
\[\sqrt{\frac{{{a}^{2}}+{{b}^{2}}}{4+{{a}^{2}}+{{b}^{2}}}}\] done
clear
D)
\[\sqrt{\frac{4+{{a}^{2}}+{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}}\] done
clear
View Solution play_arrow
-
question_answer27)
If \[\tan A=\frac{1-\cos B}{\sin B},\]find\[\tan 2A\]in terms of \[\tan B\]and show that [IIT 1983; MP PET 1994]
A)
\[\tan 2A=\tan B\] done
clear
B)
\[\tan 2A={{\tan }^{2}}B\] done
clear
C)
\[\tan 2A={{\tan }^{2}}B+2\tan B\] done
clear
D)
None of the above done
clear
View Solution play_arrow
-
question_answer28)
If \[\sin \beta \]is the geometric mean between \[\sin \alpha \]and \[\cos \alpha ,\]then \[\cos 2\beta \]is equal to
A)
\[2{{\sin }^{2}}\left( \frac{\pi }{4}-\alpha \right)\] done
clear
B)
\[2{{\cos }^{2}}\left( \frac{\pi }{4}-\alpha \right)\] done
clear
C)
\[2{{\cos }^{2}}\left( \frac{\pi }{4}+\alpha \right)\] done
clear
D)
\[2{{\sin }^{2}}\left( \frac{\pi }{4}+\alpha \right)\] done
clear
View Solution play_arrow
-
question_answer29)
\[\frac{\sec 8A-1}{\sec 4A-1}=\] [MP PET 1995]
A)
\[\frac{\tan 2A}{\tan 8A}\] done
clear
B)
\[\frac{\tan 8A}{\tan 2A}\] done
clear
C)
\[\frac{\cot 8A}{\cot 2A}\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer30)
If \[\frac{\cos A}{\sin B\sin C}+\frac{\cos B}{\sin C\sin A}+\frac{\cos C}{\sin A\sin B}=\]then \[32\sin \left( \frac{A}{2} \right)\sin \left( \frac{5A}{2} \right)=\] [DCE 1996]
A)
7 done
clear
B)
8 done
clear
C)
11 done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer31)
\[\tan 15{}^\circ =\] [EAMCET 1981]
A)
\[\frac{1}{3}\] done
clear
B)
\[\sqrt{3}-2\] done
clear
C)
\[2-\sqrt{3}\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer32)
If \[\tan \alpha =\frac{1}{7},\ \tan \beta =\frac{1}{3},\]then \[\cos 2\alpha =\] [CET 1986]
A)
\[\sin 2\beta \] done
clear
B)
\[\sin 4\beta \] done
clear
C)
\[\sin 3\beta \] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer33)
If \[\tan \beta =\cos \theta \tan \alpha ,\]then \[{{\tan }^{2}}\frac{\theta }{2}=\]
A)
\[\frac{\sin (\alpha +\beta )}{\sin (\alpha -\beta )}\] done
clear
B)
\[\frac{\cos (\alpha -\beta )}{\cos (\alpha +\beta )}\] done
clear
C)
\[\frac{\sin (\alpha -\beta )}{\sin (\alpha +\beta )}\] done
clear
D)
\[\frac{\cos (\alpha +\beta )}{\cos (\alpha -\beta )}\] done
clear
View Solution play_arrow
-
question_answer34)
.If \[\cos A=\frac{3}{4}\], then \[32\sin \frac{A}{2}\cos \frac{5}{2}A=\] [EAMCET 1982]
A)
\[\sqrt{7}\] done
clear
B)
\[-\sqrt{7}\] done
clear
C)
7 done
clear
D)
-7 done
clear
View Solution play_arrow
-
question_answer35)
If \[\theta \]and \[\varphi \]are angles in the 1st quadrant such that \[\tan \theta =1/7\]and \[\sin \varphi =1/\sqrt{10}\].Then [Kurukshetra CEE 1998; AMU 2001]
A)
\[\theta +2\varphi =90{}^\circ \] done
clear
B)
\[\theta +2\varphi =60{}^\circ \] done
clear
C)
\[\theta +2\varphi =30{}^\circ \] done
clear
D)
\[\theta +2\varphi =45{}^\circ \] done
clear
View Solution play_arrow
-
question_answer36)
\[\frac{\cos A}{1-\sin A}=\]
A)
\[\sec A-\tan A\] done
clear
B)
\[\text{cosec}\,A+\cot A\] done
clear
C)
\[\tan \left( \frac{\pi }{4}-\frac{A}{2} \right)\] done
clear
D)
\[\tan \left( \frac{\pi }{4}+\frac{A}{2} \right)\] done
clear
View Solution play_arrow
-
question_answer37)
\[\tan \frac{A}{2}\]is equal to
A)
\[\pm \sqrt{\frac{1-\sin A}{1+\sin A}}\] done
clear
B)
\[\pm \sqrt{\frac{1+\sin A}{1-\sin A}}\] done
clear
C)
\[\pm \sqrt{\frac{1-\cos A}{1+\cos A}}\] done
clear
D)
\[\pm \sqrt{\frac{1+\cos A}{1-\cos A}}\] done
clear
View Solution play_arrow
-
question_answer38)
If \[\sin \alpha =\frac{-3}{5},\]where \[\pi <\alpha <\frac{3\pi }{2},\]then \[\cos \frac{1}{2}\alpha =\] [MP PET 1998]
A)
\[\frac{-1}{\sqrt{10}}\] done
clear
B)
\[\frac{1}{\sqrt{10}}\] done
clear
C)
\[\frac{3}{\sqrt{10}}\] done
clear
D)
\[\frac{-3}{\sqrt{10}}\] done
clear
View Solution play_arrow
-
question_answer39)
Let\[0<x<\frac{\pi }{4}.\]Then \[\sec 2x-\tan 2x=\] [IIT Screening 1994]
A)
\[\tan \left( x-\frac{\pi }{4} \right)\] done
clear
B)
\[\tan \left( \frac{\pi }{4}-x \right)\] done
clear
C)
\[\tan \left( x+\frac{\pi }{4} \right)\] done
clear
D)
\[{{\tan }^{2}}\left( x+\frac{\pi }{4} \right)\] done
clear
View Solution play_arrow
-
question_answer40)
If \[\sin \theta +\cos \theta =x,\] then \[{{\sin }^{6}}\theta +{{\cos }^{6}}\theta =\frac{1}{4}[4-3{{({{x}^{2}}-1)}^{2}}]\] for
A)
All real x done
clear
B)
\[{{x}^{2}}\le 2\] done
clear
C)
\[{{x}^{2}}\ge 2\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer41)
If \[\tan \theta =t,\]then \[\tan 2\theta +\sec 2\theta =\] [MP PET 1999]
A)
\[\frac{1+t}{1-t}\] done
clear
B)
\[\frac{1-t}{1+t}\] done
clear
C)
\[\frac{2t}{1-t}\] done
clear
D)
\[\frac{2t}{1+t}\] done
clear
View Solution play_arrow
-
question_answer42)
\[\frac{\sqrt{2}-\sin \alpha -\cos \alpha }{\sin \alpha -\cos \alpha }=\] [AMU 1999]
A)
\[\sec \left( \frac{\alpha }{2}-\frac{\pi }{8} \right)\] done
clear
B)
\[\cos \left( \frac{\pi }{8}-\frac{\alpha }{2} \right)\] done
clear
C)
\[\tan \left( \frac{\alpha }{2}-\frac{\pi }{8} \right)\] done
clear
D)
\[\cot \left( \frac{\alpha }{2}-\frac{\pi }{2} \right)\] done
clear
View Solution play_arrow
-
question_answer43)
If \[\cos \theta =\frac{1}{2}\left( a+\frac{1}{a} \right),\]then the value of \[\cos 3\theta \]is [MP PET 2001; Pb. CET 2002]
A)
\[\frac{1}{8}\left( {{a}^{3}}+\frac{1}{{{a}^{3}}} \right)\] done
clear
B)
\[\frac{3}{2}\left( a+\frac{1}{a} \right)\] done
clear
C)
\[\frac{1}{2}\left( {{a}^{3}}+\frac{1}{{{a}^{3}}} \right)\] done
clear
D)
\[\frac{1}{3}\left( {{a}^{3}}+\frac{1}{{{a}^{3}}} \right)\] done
clear
View Solution play_arrow
-
question_answer44)
If \[\alpha \] is a root of \[25{{\cos }^{2}}\theta +5\cos \theta -12=0\], \[\pi /2<\alpha <\pi \], then \[\sin 2\alpha \]is equal to [UPSEAT 2001]
A)
\[24/25\] done
clear
B)
\[-24/25\] done
clear
C)
\[13/18\] done
clear
D)
\[-13/18\] done
clear
View Solution play_arrow
-
question_answer45)
For \[A=133{}^\circ ,\ 2\cos \frac{A}{2}\]is equal to [DCE 2001]
A)
\[-\sqrt{1+\sin A}-\sqrt{1-\sin A}\] done
clear
B)
\[-\sqrt{1+\sin A}+\sqrt{1-\sin A}\] done
clear
C)
\[\sqrt{1+\sin A}-\sqrt{1-\sin A}\] done
clear
D)
\[\sqrt{1+\sin A}+\sqrt{1-\sin A}\] done
clear
View Solution play_arrow
-
question_answer46)
If \[90{}^\circ <A<180{}^\circ \]and \[\sin A=\frac{4}{5},\]then \[\tan \frac{A}{2}\]is equal to [AMU 2001]
A)
\[1/2\] done
clear
B)
\[3/5\] done
clear
C)
\[3/2\] done
clear
D)
\[2\] done
clear
View Solution play_arrow
-
question_answer47)
If \[2\tan A=3\tan B,\]then \[\frac{\sin 2B}{5-\cos 2B}\]is equal to [AMU 2001]
A)
\[\tan A-\tan B\] done
clear
B)
\[\tan (A-B)\] done
clear
C)
\[\tan (A+B)\] done
clear
D)
\[\tan (A+2B)\] done
clear
View Solution play_arrow
-
question_answer48)
. Given that \[\cos \left( \frac{\alpha -\beta }{2} \right)=2\cos \left( \frac{\alpha +B}{2} \right)\], then \[\tan \frac{\alpha }{2}\tan \frac{\beta }{2}\]is equal to [AMU 2001]
A)
\[\frac{1}{2}\] done
clear
B)
\[\frac{1}{3}\] done
clear
C)
\[\frac{1}{4}\] done
clear
D)
\[\frac{1}{8}\] done
clear
View Solution play_arrow
-
question_answer49)
If \[\tan \frac{\theta }{2}=t,\]then \[\frac{1-{{t}^{2}}}{1+{{t}^{2}}}\]is equal to [Kerala (Engg.) 2002]
A)
\[\cos \theta \] done
clear
B)
\[\sin \theta \] done
clear
C)
\[\sec \theta \] done
clear
D)
\[\cos 2\theta \] done
clear
View Solution play_arrow
-
question_answer50)
If \[\sqrt{x}+\frac{1}{\sqrt{x}}=2\cos \theta ,\]then \[{{x}^{6}}+{{x}^{-6}}=\] [Karnataka CET 2003]
A)
\[2\cos 6\theta \] done
clear
B)
\[2\cos 12\theta \] done
clear
C)
\[2\cos 3\theta \] done
clear
D)
\[2\sin 3\theta \] done
clear
View Solution play_arrow
-
question_answer51)
If \[\sin 2\theta +\sin 2\varphi =1/2\] and \[\cos 2\theta +\cos 2\varphi =3/2\], then \[{{\cos }^{2}}(\theta -\varphi )=\] [MP PET 2000; Pb. CET 2000]
A)
\[3/8\] done
clear
B)
\[A+B+C=\pi ,\] done
clear
C)
\[3/4\] done
clear
D)
\[5/4\] done
clear
View Solution play_arrow
-
question_answer52)
\[\cos 2(\theta +\varphi )-4\cos (\theta +\varphi )\sin \theta \sin \varphi +2{{\sin }^{2}}\varphi =\] [Orissa JEE 2004]
A)
\[\cos 2\theta \] done
clear
B)
\[\cos 3\theta \] done
clear
C)
\[\sin 2\theta \] done
clear
D)
\[\sin 3\theta \] done
clear
View Solution play_arrow
-
question_answer53)
Which of the following number(s) is/are rational [IIT 1998]
A)
\[\sin 15{}^\circ \] done
clear
B)
\[\cos 15{}^\circ \] done
clear
C)
\[\sin 15{}^\circ \cos 15{}^\circ \] done
clear
D)
\[\sin 15{}^\circ \cos 75{}^\circ \] done
clear
View Solution play_arrow
-
question_answer54)
\[\cos 15{}^\circ =\] [MP PET 1988; MNR 1978]
A)
\[\sqrt{\frac{1+\cos 30{}^\circ }{2}}\] done
clear
B)
\[\sqrt{\frac{1-\cos 30{}^\circ }{2}}\] done
clear
C)
\[\pm \sqrt{\frac{1+\cos 30{}^\circ }{2}}\] done
clear
D)
\[\pm \sqrt{\frac{1-\cos 30{}^\circ }{2}}\] done
clear
View Solution play_arrow
-
question_answer55)
If \[\sin A+\cos A=\sqrt{2},\]then \[{{\cos }^{2}}A=\]
A)
\[\frac{1}{4}\] done
clear
B)
\[\frac{1}{2}\] done
clear
C)
\[\frac{1}{\sqrt{2}}\] done
clear
D)
\[\frac{3}{2}\] done
clear
View Solution play_arrow
-
question_answer56)
\[2{{\cos }^{2}}\theta -2{{\sin }^{2}}\theta =1\],then \[\theta \]= [Karnataka CET 1998]
A)
\[15{}^\circ \] done
clear
B)
\[30{}^\circ \] done
clear
C)
\[45{}^\circ \] done
clear
D)
\[60{}^\circ \] done
clear
View Solution play_arrow
-
question_answer57)
If \[\sin \alpha =\frac{336}{625}\]and \[450{}^\circ <\alpha <540{}^\circ ,\] then \[\sin \left( \frac{\alpha }{4} \right)=\]
A)
\[\frac{1}{5\sqrt{2}}\] done
clear
B)
\[\frac{7}{25}\] done
clear
C)
\[\frac{4}{5}\] done
clear
D)
\[\frac{3}{5}\] done
clear
View Solution play_arrow
-
question_answer58)
If \[{{\tan }^{2}}\theta =2{{\tan }^{2}}\varphi +1,\] then \[\cos 2\theta +{{\sin }^{2}}\varphi \] equals
A)
-1 done
clear
B)
0 done
clear
C)
1 done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer59)
\[{{\cos }^{4}}\frac{\pi }{8}+{{\cos }^{4}}\frac{3\pi }{8}+{{\cos }^{4}}\frac{5\pi }{8}+{{\cos }^{4}}\frac{7\pi }{8}=\]
A)
\[\frac{1}{2}\] done
clear
B)
\[\frac{1}{4}\] done
clear
C)
\[\frac{3}{2}\] done
clear
D)
\[\frac{3}{4}\] done
clear
View Solution play_arrow
-
question_answer60)
If \[\sin x+\cos x=\frac{1}{5},\]then \[\tan 2x\]is [UPSEAT 2003]
A)
\[\frac{25}{17}\] done
clear
B)
\[\frac{7}{25}\] done
clear
C)
\[\frac{25}{7}\] done
clear
D)
\[\frac{24}{7}\] done
clear
View Solution play_arrow
-
question_answer61)
\[{{\cos }^{2}}A{{(3-4{{\cos }^{2}}A)}^{2}}+{{\sin }^{2}}A{{(3-4{{\sin }^{2}}A)}^{2}}=\]
A)
\[\cos 4A\] done
clear
B)
\[\sin 4A\] done
clear
C)
1 done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer62)
\[\frac{\tan A+\sec A-1}{\tan A-\sec A+1}=\]
A)
\[\frac{1-\sin A}{\cos A}\] done
clear
B)
\[\frac{1-\cos A}{\sin A}\] done
clear
C)
\[\frac{1+\sin A}{\cos A}\] done
clear
D)
\[\frac{1+\cos A}{\sin A}\] done
clear
View Solution play_arrow
-
question_answer63)
\[\sqrt{\frac{1-\sin A}{1+\sin A}}=\]
A)
\[\sec A+\tan A\] done
clear
B)
\[\tan \left( \frac{\pi }{4}-A \right)\] done
clear
C)
\[\tan \left( \frac{\pi }{4}+\frac{A}{2} \right)\] done
clear
D)
\[\tan \left( \frac{\pi }{4}-\frac{A}{2} \right)\] done
clear
View Solution play_arrow
-
question_answer64)
\[\frac{\sin 3\theta -\cos 3\theta }{\sin \theta +\cos \theta }+1=\]
A)
\[2\sin 2\theta \] done
clear
B)
\[2\cos 2\theta \] done
clear
C)
\[\tan 2\theta \] done
clear
D)
\[\cot 2\theta \] done
clear
View Solution play_arrow
-
question_answer65)
The value of \[\tan 7\frac{1}{2}{}^\circ \] is equal to [J & K 2005]
A)
\[\sqrt{6}+\sqrt{3}+\sqrt{2}-2\] done
clear
B)
\[\sqrt{6}-\sqrt{3}+\sqrt{2}-2\] done
clear
C)
\[\sqrt{6}-\sqrt{3}+\sqrt{2}+2\] done
clear
D)
\[\sqrt{6}-\sqrt{3}-\sqrt{2}-2\] done
clear
View Solution play_arrow
-
question_answer66)
If \[\theta \]is an acute angle and \[\sin \frac{\theta }{2}=\sqrt{\frac{x-1}{2x}}\], then \[\tan \theta \] is equal to [Orissa JEE 2005]
A)
\[{{x}^{2}}-1\] done
clear
B)
\[\sqrt{{{x}^{2}}-1}\] done
clear
C)
\[\sqrt{{{x}^{2}}+1}\] done
clear
D)
\[{{x}^{2}}+1\] done
clear
View Solution play_arrow