JEE Main & Advanced Mathematics Functions Question Bank Limits

  • question_answer
    \[\underset{x\to -1}{\mathop{\lim }}\,\frac{\sqrt{\pi }-\sqrt{{{\cos }^{-1}}x}}{\sqrt{x+1}}\]is given by

    A)                 \[\frac{1}{\sqrt{\pi }}\]

    B)                 \[\frac{1}{\sqrt{2\pi }}\]

    C)                 1

    D)                 0

    Correct Answer: B

    Solution :

                       Put \[{{\cos }^{-1}}x=y.\] So if \[x\to -1,\,\,y\to \pi \]            \[\therefore \,\,\,\underset{x\to -1}{\mathop{\lim }}\,\,\frac{\sqrt{\pi }-\sqrt{{{\cos }^{-1}}x}}{\sqrt{x+1}}=\underset{y\to \pi }{\mathop{\lim }}\,\,\frac{\sqrt{\pi }-\sqrt{y}}{\sqrt{1+\cos y}}\]            \[=\underset{y\to \pi }{\mathop{\lim }}\,\,\frac{\sqrt{\pi }-\sqrt{y}}{\sqrt{2}\,\cos \,(y/2)}\,=\underset{y\to \pi }{\mathop{\lim }}\,\,\,\frac{\sqrt{\pi }-\sqrt{y}}{\sqrt{2}\,\sin \,\left( \frac{\pi }{2}-\frac{y}{2} \right)}\frac{\left( \frac{\pi }{2}-\frac{y}{2} \right)}{\left( \frac{\pi }{2}-\frac{y}{2} \right)}\]                 \[=\underset{y\to \pi }{\mathop{\lim }}\,\,\frac{1}{\frac{\sqrt{2}}{2}(\sqrt{\pi }+\sqrt{y})}.\frac{1}{\frac{\sin \,\left( \frac{\pi }{2}-\frac{y}{2} \right)}{\left( \frac{\pi }{2}-\frac{y}{2} \right)}}=\frac{1}{\sqrt{2\pi }}.\]


You need to login to perform this action.
You will be redirected in 3 sec spinner