JEE Main & Advanced Mathematics Functions Question Bank Limits

  • question_answer
    The value of \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{x}^{m}}{{(\log x)}^{n}},\ m,\ n\in N\]is

    A)                 0

    B)                 \[\frac{m}{n}\]

    C)                 \[mn\]

    D)                 None of these

    Correct Answer: A

    Solution :

                       \[\underset{x\to 0+}{\mathop{\lim }}\,\,{{x}^{m}}\,{{(\log x)}^{n}}=\underset{x\to 0+}{\mathop{\lim }}\,\,\frac{{{(\log x)}^{n}}}{{{x}^{-m}}}\] \[\left( \text{Form}\frac{\infty }{\infty } \right)\]                \[\log \,\,P=\int_{0}^{1}{{}}\log x\,dx=(x\,\log x-x)_{0}^{1}=(-1)\]               (By L-Hospital's rule)                \[=\underset{x\to 0+}{\mathop{\lim }}\,\,\frac{n\,{{(\log x)}^{n-1}}}{-m{{x}^{-m}}}\,\]                   \[\left( \text{Form}\frac{\infty }{\infty } \right)\]                \[=\underset{x\to 0+}{\mathop{\lim }}\,\,\frac{n\,(n-1)\,{{(\log x)}^{(n-2)}}\frac{1}{x}}{{{(-m)}^{2}}{{x}^{-m-1}}}\]     (By L-Hospital's rule)                \[=\underset{x\to 0+}{\mathop{\lim }}\,\,\frac{n\,(n-1)\,{{(\log x)}^{n-2}}}{{{m}^{2}}{{x}^{-m}}}\,\]         \[\left( \text{Form}\frac{\infty }{\infty } \right)\]                .......................                ......................                       \[=\underset{x\to 0+}{\mathop{\lim }}\,\,\frac{n\,\,!}{{{(-m)}^{n}}{{x}^{-m}}}=0\]                                                 (Differentiating \[{{N}^{r}}\] and \[{{D}^{r}}\] n times).


You need to login to perform this action.
You will be redirected in 3 sec spinner