12th Class Physics Photo Electric Effect, X- Rays & Matter Waves Question Bank MCQs - Dual Nature of Radiation and Matter

  • question_answer
    An electron (mass m) with an initial velocity \[v={{v}_{0}}\hat{l}\] is in an electric field \[E={{E}_{0}}\hat{j}\]. If \[{{\lambda }_{0}}=\frac{h}{m{{v}_{0}}}\] its de-Broglie wavelength at time t is given by

    A) \[{{\lambda }_{0}}\]

    B) \[{{\lambda }_{0}}\sqrt{1+\frac{{{e}^{2}}\operatorname{E}_{0}^{2}{{t}^{2}}}{{{m}^{2}}v_{0}^{2}}}\]

    C) \[\frac{{{\lambda }_{0}}}{\sqrt{1+\frac{{{e}^{2}}\operatorname{E}_{0}^{2}{{t}^{2}}}{{{m}^{2}}v_{0}^{2}}}}\]

    D) \[\frac{{{\lambda }_{0}}}{\left( 1+\frac{{{e}^{2}}\operatorname{E}_{0}^{2}{{t}^{2}}}{{{m}^{2}}v_{0}^{2}} \right)}\]

    Correct Answer: C

    Solution :

    Option [c] is correct.
    Explanation: According to the problem de-Broglie wavelength of electron at time t=0 is  \[{{\lambda }_{0}}=\frac{h}{m{{v}_{0}}}\]
     Electrostatic force on electron in electric field is \[{{\vec{F}}_{e}}=-e\vec{E}=-e{{E}_{0}}\hat{j}\]
    The acceleration of electron, \[\vec{a}=\frac{{\vec{F}}}{m}=-\frac{e{{E}_{0}}}{m}\hat{j}\] It is acting along negative y-axis.
    The initial velocity of electron along x-sods,  \[{{v}_{{{x}_{0}}}}={{v}_{o}}\hat{i}\]
    This component of velocity will remain constant as there is no force on electron in this direction. Now considering y-direction, initial velocity of electron along y-axis,\[{{v}_{{{y}_{0}}}}=0\]
    Velocity of electron after time t along y-axis \[{{v}_{y}}=0+\left( -\frac{e{{E}_{0}}}{m}\operatorname{J} \right)t=-\frac{e{{E}_{0}}}{m}t\hat{j}\]
    Magnitude of velocity electron after t is \[v=\sqrt{v_{x}^{2}+v_{y}^{2}}={{\sqrt{v_{0}^{2}+\left( -\frac{e{{E}_{0}}}{m}t \right)}}^{2}}\]
    \[\Rightarrow \]       \[={{v}_{0}}\sqrt{1+\frac{{{e}^{2}}E_{0}^{2}{{t}^{2}}}{{{m}^{2}}v_{0}^{2}}}\]
    de - Broglie wavelength, \[{{\lambda }_{0}}=\frac{h}{m{{v}_{0}}}\]
    \[=\frac{h}{m{{v}_{0}}\sqrt{1+\frac{{{e}^{2}}E_{0}^{2}{{t}^{2}}}{{{m}^{2}}v_{0}^{2}}}}=\frac{{{\lambda }_{0}}}{\sqrt{1+\frac{{{e}^{2}}E_{0}^{2}{{t}^{2}}}{{{m}^{2}}v_{0}^{2}}}}\]
    \[\Rightarrow \]           \[{\lambda }'=\frac{{{\lambda }_{0}}}{\left( 1+\frac{{{e}^{2}}E_{0}^{2}{{t}^{2}}}{{{m}^{2}}v_{0}^{2}} \right)}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner