10th Class Mathematics Introduction to Trigonometry Question Bank MCQs - Introduction to Trigonometry

  • question_answer
    If \[\cos ec\,\theta -\cot \theta =\frac{1}{2},\] \[0<\theta <\frac{\pi }{2},\] then \[\cos \theta =\]

    A) \[\frac{5}{3}\]

    B) \[\frac{3}{5}\]

    C) \[\frac{2}{5}\]

    D) \[\frac{4}{5}\]

    Correct Answer: B

    Solution :

    [b]\[\cos ec\,\theta -\cot \theta =\frac{1}{2}\] ...(1)
    Also,\[\cos e{{c}^{2}}\,\theta -{{\cot }^{2}}\theta =1\]
    \[\Rightarrow \,\,\,\,\,\,\,\,\,\,\,\,\,\cos ec\theta +\cot \theta =2\]
    From eqs. (1) and (2). we get 
    \[\Rightarrow \,\,\,\,\,\,\,\,\,\,\,2\cos ec\theta =\frac{5}{2}\,\,\,\,\,\,\,\,\Rightarrow \,\,\cos ec\theta =\frac{5}{4}\]
    \[\Rightarrow \,\,\,\,\,\,\,\,\,\,\,\sin \theta =\frac{4}{5}\,\,\,\,\,\,\,\,\Rightarrow \,\,\cos \theta =\sqrt{1-{{\sin }^{2}}\theta }\]
      \[=\sqrt{1-{{\left( \frac{4}{5} \right)}^{2}}}=\sqrt{1-\frac{16}{25}}=\frac{3}{5}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner