10th Class Mathematics Introduction to Trigonometry Question Bank MCQs - Introduction to Trigonometry

  • question_answer
    If \[x=p\sec \theta \] and \[y=q\tan \theta ,\] then:

    A) \[{{x}^{2}}-{{y}^{2}}={{p}^{2}}{{q}^{2}}\]

    B) \[{{x}^{2}}{{q}^{2}}-{{y}^{2}}{{p}^{2}}=pq\]

    C) \[{{x}^{2}}{{q}^{2}}-{{y}^{2}}{{p}^{2}}=\frac{1}{{{p}^{2}}{{q}^{2}}}\]

    D) \[{{x}^{2}}{{q}^{2}}-{{y}^{2}}{{p}^{2}}={{p}^{2}}{{q}^{2}}\]

    Correct Answer: D

    Solution :

    [d] We know, \[{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1\]
    and  \[\sec \theta =\frac{x}{p}\]and \[\tan \theta =\frac{y}{q}\]
    \[\frac{{{x}^{2}}}{{{p}^{2}}}-\frac{{{y}^{2}}}{{{q}^{2}}}=1\]
    \[{{x}^{2}}{{q}^{2}}-{{y}^{2}}{{p}^{2}}={{p}^{2}}{{q}^{2}}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner