10th Class Mathematics Introduction to Trigonometry Question Bank MCQs - Introduction to Trigonometry

  • question_answer
    If in a right-angled \[\Delta ACB,\] \[\tan \,B=\frac{12}{5},\] then \[\sin B\] is:           (CBSE 2014)

    A) \[\frac{12}{13}\]

    B) \[\frac{5}{13}\]

    C) \[\frac{7}{13}\]

    D) \[\frac{9}{13}\]

    Correct Answer: A

    Solution :

    [a] Given,
    \[\tan B=\frac{12}{5}=\frac{P}{B}\]
    Let\[P=12K\]
    and \[B=5K\]
    Now, in right-angled \[\Delta ABC,\]
    \[{{H}^{2}}={{P}^{2}}+{{B}^{2}}\] (By Pythagoras theorem)
    \[\Rightarrow \,\,\,\,\,{{H}^{2}}={{(12K)}^{2}}+{{(5K)}^{2}}=144{{K}^{2}}+25{{K}^{2}}=169{{K}^{2}}\]
    \[\Rightarrow \,\,\,\,\,H=13K\]
    \[\therefore \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\sin B=\frac{P}{H}=\frac{12K}{13K}=\frac{12}{13}\]


You need to login to perform this action.
You will be redirected in 3 sec spinner