A) \[\frac{12}{13}\]
B) \[\frac{5}{13}\]
C) \[\frac{7}{13}\]
D) \[\frac{9}{13}\]
Correct Answer: A
Solution :
[a] Given, |
\[\tan B=\frac{12}{5}=\frac{P}{B}\] |
Let\[P=12K\] |
and \[B=5K\] |
Now, in right-angled \[\Delta ABC,\] |
\[{{H}^{2}}={{P}^{2}}+{{B}^{2}}\] (By Pythagoras theorem) |
\[\Rightarrow \,\,\,\,\,{{H}^{2}}={{(12K)}^{2}}+{{(5K)}^{2}}=144{{K}^{2}}+25{{K}^{2}}=169{{K}^{2}}\] |
\[\Rightarrow \,\,\,\,\,H=13K\] |
\[\therefore \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\sin B=\frac{P}{H}=\frac{12K}{13K}=\frac{12}{13}\] |
You need to login to perform this action.
You will be redirected in
3 sec