A) \[-1\]
B) \[1\]
C) \[\cot \theta \]
D) \[\sec \theta \]
Correct Answer: B
Solution :
[b] \[({{\operatorname{cosec}}^{2}}\theta -1)ta{{n}^{2}}\theta ={{\cot }^{2}}\theta \cdot {{\tan }^{2}}\theta ={{\cot }^{2}}\theta \frac{1}{{{\cot }^{2}}\theta }=1\] |
\[\left( \cos e{{c}^{2}}\theta -1={{\cot }^{2}}\theta and\tan \theta =\frac{1}{\cot \theta } \right)\] |
You need to login to perform this action.
You will be redirected in
3 sec