A) 1
B) 7
C) 23
D) 25
Correct Answer: C
Solution :
[c]Given, \[\tan \theta +\cot \theta =5\] |
Squaring on both sides, we get |
\[{{(\tan \theta +\cot \theta )}^{2}}={{(5)}^{2}}\] |
\[\Rightarrow \,\,\,\,\,\,{{\tan }^{2}}\theta +{{\cot }^{2}}\theta +2\tan \theta \cdot \cot \theta =25\] |
\[\Rightarrow \,\,\,\,\,\,{{\tan }^{2}}\theta +{{\cot }^{2}}\theta +2\tan \theta \cdot \frac{1}{\tan \theta }=25\]\[\left( \cot \theta =\frac{1}{\tan \theta } \right)\] |
\[\Rightarrow \,\,\,\,\,\,\,\,\,\,{{\tan }^{2}}\theta +{{\cot }^{2}}\theta =25-2\] |
\[\therefore \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{\tan }^{2}}\theta +{{\cot }^{2}}\theta =23\] |
You need to login to perform this action.
You will be redirected in
3 sec