10th Class Mathematics Introduction to Trigonometry Question Bank MCQs - Introduction to Trigonometry

  • question_answer
    If \[\frac{x\,\text{cose}{{\text{c}}^{2}}30{}^\circ \,\,{{\sec }^{2}}45{}^\circ }{8\,{{\cos }^{2}}45{}^\circ \,{{\sin }^{2}}60{}^\circ }={{\tan }^{2}}60{}^\circ -{{\tan }^{2}}30{}^\circ ,\]then \[x=\]

    A) \[1\]

    B) \[-1\]

    C) \[2\]

    D) \[0\]

    Correct Answer: A

    Solution :

    [a] We have,  \[\frac{x\cos e{{c}^{2}}30{}^\circ \,\,{{\sec }^{2}}45{}^\circ }{8{{\cos }^{2}}45{}^\circ {{\sin }^{2}}60{}^\circ }={{\tan }^{2}}60{}^\circ -{{\tan }^{2}}30{}^\circ \]
    \[\Rightarrow \,\,\,\,\,\,\frac{x{{(2)}^{2}}\,{{(\sqrt{2})}^{2}}}{8{{\left( \frac{1}{\sqrt{2}} \right)}^{2}}{{\left( \frac{\sqrt{3}}{2} \right)}^{2}}}={{(\sqrt{3})}^{2}}-{{\left( \frac{1}{\sqrt{3}} \right)}^{2}}\]
    \[\Rightarrow \,\,\,\,\,\,\frac{8x}{3}=3-\frac{1}{3}\Rightarrow \frac{8x}{3}=\frac{8}{3}\Rightarrow x=\frac{3}{8}\times \frac{8}{3}=1\]


You need to login to perform this action.
You will be redirected in 3 sec spinner