A) \[\frac{7}{25}\]
B) \[1\]
C) \[\frac{-7}{25}\]
D) \[\frac{4}{25}\]
Correct Answer: A
Solution :
[a] We have, \[\tan \theta =\frac{AB}{BC}=\frac{3}{4}\] |
Let \[AB=3k,\] \[BC=4k,\]where k is positive constant. |
\[\therefore \,\,\,\,\,\,A{{C}^{2}}=A{{B}^{2}}+B{{C}^{2}}\] |
\[\Rightarrow \,\,\,A{{C}^{2}}=9{{k}^{2}}+16{{k}^{2}}=25{{k}^{2}}\] |
\[\Rightarrow \,\,\,AC=5k\] |
\[\therefore \,\,\,\,\,\cos \theta =\frac{BC}{AC}=\frac{4k}{5k}=\frac{4}{5}\] |
and \[\sin \theta =\frac{AB}{AC}=\frac{3k}{5k}=\frac{3}{5}\] |
\[\therefore \,\,\,\,{{\cos }^{2}}\theta -{{\sin }^{2}}\theta ={{\left( \frac{4}{5} \right)}^{2}}-{{\left( \frac{3}{5} \right)}^{2}}=\frac{16}{25}-\frac{9}{25}=\frac{7}{25}\] |
You need to login to perform this action.
You will be redirected in
3 sec